Computers and Information Technology Department, Politehnica University of Timisoara, Timisoara 300223, Romania.
Everseen Limited, 4th Floor, The Atrium, Blackpool, T23-T2VY Cork, Ireland.
Sensors (Basel). 2019 Apr 8;19(7):1676. doi: 10.3390/s19071676.
Citizen safety in modern urban environments is an important aspect of life quality. Implementation of a smart city approach to video surveillance depends heavily on the capability of gathering and processing huge amounts of live urban data. Analyzing data from high bandwidth surveillance video streams provided by large size distributed sensor networks is particularly challenging. We propose here an efficient method for automatic violent behavior detection designed for video sensor networks. Known solutions to real-time violence detection are not suitable for implementation in a resource-constrained environment due to the high processing power requirements. Our algorithm achieves real-time processing on a Raspberry PI-embedded architecture. To ensure separation of temporal and spatial information processing we employ a computationally effective cascaded approach. It consists of a deep neural network followed by a time domain classifier. In contrast with current approaches, the deep neural network input is fed exclusively with motion vector features extracted directly from the MPEG encoded video stream. As proven by results, we achieve state-of-the-art performance, while running on a low computational resources embedded architecture.
现代城市环境中的公民安全是生活质量的一个重要方面。实施智慧城市方法的视频监控在很大程度上依赖于采集和处理大量实时城市数据的能力。分析由大型分布式传感器网络提供的高带宽监控视频流的数据特别具有挑战性。我们在这里提出了一种用于视频传感器网络的自动暴力行为检测的有效方法。由于处理能力要求高,已知的实时暴力检测解决方案不适合在资源受限的环境中实现。我们的算法在嵌入式 Raspberry PI 架构上实现实时处理。为了确保时间和空间信息处理的分离,我们采用了一种计算有效的级联方法。它由一个深度神经网络和一个时域分类器组成。与当前的方法相比,深度神经网络的输入仅由从 MPEG 编码视频流中直接提取的运动矢量特征提供。正如结果所证明的,我们在运行低计算资源的嵌入式架构上实现了最先进的性能。