Suppr超能文献

智慧城市视频监控中的实时异常目标检测。

Real-Time Abnormal Object Detection for Video Surveillance in Smart Cities.

机构信息

Department of Computer and Information Security, and Convergence Engineering for Intelligent Drone, Sejong University, Seoul 05006, Korea.

出版信息

Sensors (Basel). 2022 May 19;22(10):3862. doi: 10.3390/s22103862.

Abstract

With the adaptation of video surveillance in many areas for object detection, monitoring abnormal behavior in several cameras requires constant human tracking for a single camera operative, which is a tedious task. In multiview cameras, accurately detecting different types of guns and knives and classifying them from other video surveillance objects in real-time scenarios is difficult. Most detecting cameras are resource-constrained devices with limited computational capacities. To mitigate this problem, we proposed a resource-constrained lightweight subclass detection method based on a convolutional neural network to classify, locate, and detect different types of guns and knives effectively and efficiently in a real-time environment. In this paper, the detection classifier is a multiclass subclass detection convolutional neural network used to classify object frames into different sub-classes such as abnormal and normal. The achieved mean average precision by the best state-of-the-art framework to detect either a handgun or a knife is 84.21% or 90.20% on a single camera view. After extensive experiments, the best precision obtained by the proposed method for detecting different types of guns and knives was 97.50% on the ImageNet dataset and IMFDB, 90.50% on the open-image dataset, 93% on the Olmos dataset, and 90.7% precision on the multiview cameras. This resource-constrained device has shown a satisfactory result, with a precision score of 85.5% for detection in a multiview camera.

摘要

随着视频监控在许多领域用于目标检测,对于单个摄像机操作人员来说,监控多个摄像机中的异常行为需要不断地进行人工跟踪,这是一项繁琐的任务。在多视角摄像机中,实时场景中准确地检测不同类型的枪支和刀具,并将其与其他视频监控物体进行分类是很困难的。大多数检测摄像机是资源受限的设备,计算能力有限。为了解决这个问题,我们提出了一种基于卷积神经网络的资源受限轻量级子类检测方法,用于在实时环境中有效地、高效地对不同类型的枪支和刀具进行分类、定位和检测。在本文中,检测分类器是一个多子类检测卷积神经网络,用于将对象帧分类为不同的子类,如异常和正常。在单摄像机视图中,最先进的框架检测手枪或刀具的平均精度达到 84.21%或 90.20%。经过广泛的实验,所提出的方法在检测不同类型的枪支和刀具时在 ImageNet 数据集和 IMFDB 上获得了最佳精度为 97.50%,在 open-image 数据集上为 90.50%,在 Olmos 数据集上为 93%,在多视角摄像机上为 90.7%。这个资源受限的设备已经取得了令人满意的结果,在多视角摄像机中的检测精度得分为 85.5%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d992/9143895/b51b3c5b7fa2/sensors-22-03862-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验