Suppr超能文献

壳聚糖在非病毒基因递送中的作用:结构、表征方法及其在癌症和罕见病治疗中的见解

Chitosan in Non-Viral Gene Delivery: Role of Structure, Characterization Methods, and Insights in Cancer and Rare Diseases Therapies.

作者信息

Santos-Carballal Beatriz, Fernández Fernández Elena, Goycoolea Francisco M

机构信息

ChiPro GmbH, Anne-Conway-Street 1, 28359 Bremen, Germany.

Lung Biology Group, Department Clinical Microbiology, RCSI, Education and Research Centre, Beaumont Hospital, Dublin 9, Ireland.

出版信息

Polymers (Basel). 2018 Apr 15;10(4):444. doi: 10.3390/polym10040444.

Abstract

Non-viral gene delivery vectors have lagged far behind viral ones in the current pipeline of clinical trials of gene therapy nanomedicines. Even when non-viral nanovectors pose less safety risks than do viruses, their efficacy is much lower. Since the early studies to deliver pDNA, chitosan has been regarded as a highly attractive biopolymer to deliver nucleic acids intracellularly and induce a transgenic response resulting in either upregulation of protein expression (for pDNA, mRNA) or its downregulation (for siRNA or microRNA). This is explained as the consequence of a multi-step process involving condensation of nucleic acids, protection against degradation, stabilization in physiological conditions, cellular internalization, release from the endolysosome ("proton sponge" effect), unpacking and enabling the trafficking of pDNA to the nucleus or the siRNA to the RNA interference silencing complex (RISC). Given the multiple steps and complexity involved in the gene transfection process, there is a dearth of understanding of the role of chitosan's structural features ( and degree of acetylation, DA%) on each step that dictates the net transfection efficiency and its kinetics. The use of fully characterized chitosan samples along with the utilization of complementary biophysical and biological techniques is key to bridging this gap of knowledge and identifying the optimal chitosans for delivering a specific gene. Other aspects such as cell type and administration route are also at play. At the same time, the role of chitosan structural features on the morphology, size and surface composition of synthetic virus-like particles has barely been addressed. The ongoing revolution brought about by the recent discovery of CRISPR-Cas9 technology will undoubtedly be a game changer in this field in the short term. In the field of rare diseases, gene therapy is perhaps where the greatest potential lies and we anticipate that chitosans will be key players in the translation of research to the clinic.

摘要

在目前的基因治疗纳米药物临床试验流程中,非病毒基因递送载体远远落后于病毒载体。即使非病毒纳米载体的安全风险比病毒载体小,但其疗效却低得多。自早期递送质粒DNA(pDNA)的研究以来,壳聚糖就被视为一种极具吸引力的生物聚合物,可将核酸递送至细胞内并诱导转基因反应,从而导致蛋白质表达上调(针对pDNA、信使核糖核酸mRNA)或下调(针对小干扰核糖核酸siRNA或微小核糖核酸microRNA)。这被解释为一个多步骤过程的结果,该过程包括核酸凝聚、防止降解、在生理条件下稳定、细胞内化、从内溶酶体释放(“质子海绵”效应)、解包以及使pDNA转运至细胞核或使siRNA转运至RNA干扰沉默复合体(RISC)。鉴于基因转染过程涉及多个步骤且十分复杂,人们对壳聚糖的结构特征(以及脱乙酰度,DA%)在决定净转染效率及其动力学的每个步骤中所起的作用缺乏了解。使用充分表征的壳聚糖样品以及利用互补的生物物理和生物学技术是弥补这一知识差距并确定递送特定基因的最佳壳聚糖的关键。细胞类型和给药途径等其他方面也在起作用。与此同时,壳聚糖结构特征对合成病毒样颗粒的形态、大小和表面组成的作用几乎未得到探讨。近期发现的CRISPR-Cas9技术引发的这场正在进行的革命无疑将在短期内成为该领域的游戏规则改变者。在罕见病领域,基因治疗或许具有最大的潜力,我们预计壳聚糖将成为推动研究转化为临床应用的关键因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ff8/6415274/6a3517ce9828/polymers-10-00444-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验