Suppr超能文献

高效的果蝇等位基因驱动。

Efficient allelic-drive in Drosophila.

机构信息

Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0335, USA.

Tata Institute for Genetics and Society-India (TIGS), TIGS Center at inStem, Bangalore, 560065, India.

出版信息

Nat Commun. 2019 Apr 9;10(1):1640. doi: 10.1038/s41467-019-09694-w.

Abstract

Gene-drive systems developed in several organisms result in super-Mendelian inheritance of transgenic insertions. Here, we generalize this "active genetic" approach to preferentially transmit allelic variants (allelic-drive) resulting from only a single or a few nucleotide alterations. We test two configurations for allelic-drive: one, copy-cutting, in which a non-preferred allele is selectively targeted for Cas9/guide RNA (gRNA) cleavage, and a more general approach, copy-grafting, that permits selective inheritance of a desired allele located in close proximity to the gRNA cut site. We also characterize a phenomenon we refer to as lethal-mosaicism that dominantly eliminates NHEJ-induced mutations and favors inheritance of functional cleavage-resistant alleles. These two efficient allelic-drive methods, enhanced by lethal mosaicism and a trans-generational drive process we refer to as "shadow-drive", have broad practical applications in improving health and agriculture and greatly extend the active genetics toolbox.

摘要

几种生物中开发的基因驱动系统导致转基因插入的超孟德尔遗传。在这里,我们将这种“主动遗传”方法推广到仅优先传递由单个或少数核苷酸改变引起的等位基因变体(等位基因驱动)。我们测试了两种等位基因驱动的配置:一种是复制切割,其中非优选等位基因被 Cas9/向导 RNA (gRNA) 切割选择性靶向,另一种是更通用的方法,复制嫁接,它允许位于 gRNA 切割位点附近的所需等位基因的选择性遗传。我们还描述了一种我们称之为致死镶嵌现象的现象,它主要消除 NHEJ 诱导的突变,并有利于具有功能的抗切割等位基因的遗传。通过致死镶嵌和我们称之为“影子驱动”的跨代驱动过程增强的这两种有效的等位基因驱动方法,在改善健康和农业方面具有广泛的实际应用,并极大地扩展了主动遗传学工具包。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db63/6456580/cb1b77a693ec/41467_2019_9694_Fig1_HTML.jpg

相似文献

1
Efficient allelic-drive in Drosophila.
Nat Commun. 2019 Apr 9;10(1):1640. doi: 10.1038/s41467-019-09694-w.
2
Inherently confinable split-drive systems in Drosophila.
Nat Commun. 2021 Mar 5;12(1):1480. doi: 10.1038/s41467-021-21771-7.
4
Molecular safeguarding of CRISPR gene drive experiments.
Elife. 2019 Jan 22;8:e41439. doi: 10.7554/eLife.41439.
5
Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline.
Nature. 2019 Feb;566(7742):105-109. doi: 10.1038/s41586-019-0875-2. Epub 2019 Jan 23.
6
Germline Cas9 promoters with improved performance for homing gene drive.
Nat Commun. 2024 May 29;15(1):4560. doi: 10.1038/s41467-024-48874-1.
7
Split versions of Cleave and Rescue selfish genetic elements for measured self limiting gene drive.
PLoS Genet. 2021 Feb 18;17(2):e1009385. doi: 10.1371/journal.pgen.1009385. eCollection 2021 Feb.
9
Chemical Controllable Gene Drive in .
ACS Synth Biol. 2020 Sep 18;9(9):2362-2377. doi: 10.1021/acssynbio.0c00117. Epub 2020 Aug 24.
10
Gene drives gaining speed.
Nat Rev Genet. 2022 Jan;23(1):5-22. doi: 10.1038/s41576-021-00386-0. Epub 2021 Aug 6.

引用本文的文献

1
Driving a protective allele of the mosquito FREP1 gene to combat malaria.
Nature. 2025 Jul 23. doi: 10.1038/s41586-025-09283-6.
2
Performance of two low-threshold population replacement gene drives in cage populations of the yellow fever mosquito, Aedes aegypti.
PLoS Genet. 2025 Jun 26;21(6):e1011757. doi: 10.1371/journal.pgen.1011757. eCollection 2025 Jun.
3
Synthetic homing endonuclease gene drives to revolutionise Aedes aegypti biocontrol - game changer or pipe dream?
Curr Opin Insect Sci. 2025 Apr 8;70:101373. doi: 10.1016/j.cois.2025.101373.
8
A multiplexed, confinable CRISPR/Cas9 gene drive can propagate in caged Aedes aegypti populations.
Nat Commun. 2024 Jan 25;15(1):729. doi: 10.1038/s41467-024-44956-2.
9
Repeat mediated excision of gene drive elements for restoring wild-type populations.
bioRxiv. 2023 Nov 23:2023.11.23.568397. doi: 10.1101/2023.11.23.568397.
10
Manipulating the Destiny of Wild Populations Using CRISPR.
Annu Rev Genet. 2023 Nov 27;57:361-390. doi: 10.1146/annurev-genet-031623-105059. Epub 2023 Sep 18.

本文引用的文献

1
Super-Mendelian inheritance mediated by CRISPR-Cas9 in the female mouse germline.
Nature. 2019 Feb;566(7742):105-109. doi: 10.1038/s41586-019-0875-2. Epub 2019 Jan 23.
2
Rapid improvement of domestication traits in an orphan crop by genome editing.
Nat Plants. 2018 Oct;4(10):766-770. doi: 10.1038/s41477-018-0259-x. Epub 2018 Oct 1.
3
The Insecticide Resistance Allele kdr-his has a Fitness Cost in the Absence of Insecticide Exposure.
J Econ Entomol. 2018 Dec 14;111(6):2992-2995. doi: 10.1093/jee/toy300.
4
Engineered CRISPR-Cas9 nuclease with expanded targeting space.
Science. 2018 Sep 21;361(6408):1259-1262. doi: 10.1126/science.aas9129. Epub 2018 Aug 30.
5
Natural Variation in Increases Drought Tolerance in Rice by Inducing ROS Scavenging.
Plant Physiol. 2018 Sep;178(1):451-467. doi: 10.1104/pp.17.01492. Epub 2018 Aug 1.
6
Reprogramming human T cell function and specificity with non-viral genome targeting.
Nature. 2018 Jul;559(7714):405-409. doi: 10.1038/s41586-018-0326-5. Epub 2018 Jul 11.
7
Co-selection: A Method for Enriching CRISPR/Cas9-Edited Alleles in .
G3 (Bethesda). 2018 Jul 31;8(8):2749-2756. doi: 10.1534/g3.118.200498.
9
Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
Nature. 2018 Apr 5;556(7699):57-63. doi: 10.1038/nature26155. Epub 2018 Feb 28.
10
Regulates Inflorescence Architecture and Development in Bread Wheat ().
Plant Cell. 2018 Mar;30(3):563-581. doi: 10.1105/tpc.17.00961. Epub 2018 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验