Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
Tata Institute for Genetics and Society, University of California, San Diego, La Jolla, CA, USA.
Nat Commun. 2021 Mar 5;12(1):1480. doi: 10.1038/s41467-021-21771-7.
CRISPR-based gene-drive systems, which copy themselves via gene conversion mediated by the homology-directed repair (HDR) pathway, have the potential to revolutionize vector control. However, mutant alleles generated by the competing non-homologous end-joining (NHEJ) pathway, resistant to Cas9 cleavage, can interrupt the spread of gene-drive elements. We hypothesized that drives targeting genes essential for viability or reproduction also carrying recoded sequences that restore endogenous gene functionality should benefit from dominantly-acting maternal clearance of NHEJ alleles combined with recessive Mendelian culling processes. Here, we test split gene-drive (sGD) systems in Drosophila melanogaster that are inserted into essential genes required for viability (rab5, rab11, prosalpha2) or fertility (spo11). In single generation crosses, sGDs copy with variable efficiencies and display sex-biased transmission. In multigenerational cage trials, sGDs follow distinct drive trajectories reflecting their differential tendencies to induce target chromosome damage and/or lethal/sterile mosaic Cas9-dependent phenotypes, leading to inherently confinable drive outcomes.
基于 CRISPR 的基因驱动系统通过同源定向修复 (HDR) 途径介导的基因转换自我复制,具有彻底改变载体控制的潜力。然而,由竞争的非同源末端连接 (NHEJ) 途径产生的、对 Cas9 切割有抗性的突变等位基因,可以中断基因驱动元件的传播。我们假设,针对对于生存或繁殖至关重要的基因的驱动,同时携带恢复内源性基因功能的重编码序列,应该受益于显性母性清除 NHEJ 等位基因与隐性孟德尔淘汰过程的结合。在这里,我们在黑腹果蝇中测试了分裂基因驱动 (sGD) 系统,这些系统插入到生存必需的基因中(rab5、rab11、prosalpha2)或生育必需的基因(spo11)。在单代杂交中,sGD 以不同的效率复制,并表现出性别偏向的传递。在多代笼养试验中,sGD 遵循不同的驱动轨迹,反映了它们诱导靶染色体损伤和/或致死/不育 Cas9 依赖性表型的不同倾向,导致固有的可控制驱动结果。