Suppr超能文献

基于吉布斯抽样的混合模型全基因组表达数量性状位点分析的贝叶斯推断

Bayesian Inference for Mixed Model-Based Genome-Wide Analysis of Expression Quantitative Trait Loci by Gibbs Sampling.

作者信息

Lee Chaeyoung

机构信息

Department of Bioinformatics and Life Science, Soongsil University, Seoul, South Korea.

出版信息

Front Genet. 2019 Mar 22;10:199. doi: 10.3389/fgene.2019.00199. eCollection 2019.

Abstract

The importance of expression quantitative trait locus (eQTL) has been emphasized in understanding the genetic basis of cellular activities and complex phenotypes. Mixed models can be employed to effectively identify eQTLs by explaining polygenic effects. In these mixed models, the polygenic effects are considered as random variables, and their variability is explained by the polygenic variance component. The polygenic and residual variance components are first estimated, and then eQTL effects are estimated depending on the variance component estimates within the frequentist mixed model framework. The Bayesian approach to the mixed model-based genome-wide eQTL analysis can also be applied to estimate the parameters that exhibit various benefits. Bayesian inferences on unknown parameters are based on their marginal posterior distributions, and the marginalization of the joint posterior distribution is a challenging task. This problem can be solved by employing a numerical algorithm of integrals called Gibbs sampling as a Markov chain Monte Carlo. This article reviews the mixed model-based Bayesian eQTL analysis by Gibbs sampling. Theoretical and practical issues of Bayesian inference are discussed using a concise description of Bayesian modeling and the corresponding Gibbs sampling. The strengths of Bayesian inference are also discussed. Posterior probability distribution in the Bayesian inference reflects uncertainty in unknown parameters. This factor is useful in the context of eQTL analysis where a sample size is too small to apply the frequentist approach. Bayesian inference based on the posterior that reflects prior knowledge, will be increasingly preferred with the accumulation of eQTL data. Extensive use of the mixed model-based Bayesian eQTL analysis will accelerate understanding of eQTLs exhibiting various regulatory functions.

摘要

表达数量性状基因座(eQTL)在理解细胞活动和复杂表型的遗传基础方面的重要性已得到强调。混合模型可通过解释多基因效应来有效地识别eQTL。在这些混合模型中,多基因效应被视为随机变量,其变异性由多基因方差分量来解释。首先估计多基因和残差方差分量,然后在频率主义混合模型框架内根据方差分量估计值来估计eQTL效应。基于混合模型的全基因组eQTL分析的贝叶斯方法也可用于估计具有各种优势的参数。对未知参数的贝叶斯推断基于其边际后验分布,而联合后验分布的边缘化是一项具有挑战性的任务。这个问题可以通过采用一种称为吉布斯采样的积分数值算法作为马尔可夫链蒙特卡罗方法来解决。本文回顾了通过吉布斯采样进行的基于混合模型的贝叶斯eQTL分析。通过对贝叶斯建模和相应吉布斯采样的简要描述,讨论了贝叶斯推断的理论和实际问题。还讨论了贝叶斯推断的优势。贝叶斯推断中的后验概率分布反映了未知参数的不确定性。在样本量太小而无法应用频率主义方法的eQTL分析背景下,这个因素很有用。基于反映先验知识的后验的贝叶斯推断,将随着eQTL数据的积累而越来越受到青睐。广泛使用基于混合模型的贝叶斯eQTL分析将加速对具有各种调控功能的eQTL的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b52/6438854/4147e805b63e/fgene-10-00199-g0001.jpg

相似文献

3
Variational bayesian method of estimating variance components.估计方差分量的变分贝叶斯方法。
Anim Sci J. 2016 Jul;87(7):863-72. doi: 10.1111/asj.12514. Epub 2016 Feb 15.

本文引用的文献

1
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
8
RNA splicing is a primary link between genetic variation and disease.RNA剪接是基因变异与疾病之间的主要联系。
Science. 2016 Apr 29;352(6285):600-4. doi: 10.1126/science.aad9417. Epub 2016 Apr 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验