Suppr超能文献

探讨复杂基因表达性状的遗传结构:人类 eQTL 图谱绘制的挑战与展望。

Towards the Genetic Architecture of Complex Gene Expression Traits: Challenges and Prospects for eQTL Mapping in Humans.

机构信息

Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea.

出版信息

Genes (Basel). 2022 Jan 26;13(2):235. doi: 10.3390/genes13020235.

Abstract

The discovery of expression quantitative trait loci (eQTLs) and their target genes (eGenes) has not only compensated for the limitations of genome-wide association studies for complex phenotypes but has also provided a basis for predicting gene expression. Efforts have been made to develop analytical methods in statistical genetics, a key discipline in eQTL analysis. In particular, mixed model- and deep learning-based analytical methods have been extremely beneficial in mapping eQTLs and predicting gene expression. Nevertheless, we still face many challenges associated with eQTL discovery. Here, we discuss two key aspects of these challenges: 1, the complexity of eTraits with various factors such as polygenicity and epistasis and 2, the voluminous work required for various types of eQTL profiles. The properties and prospects of statistical methods, including the mixed model method, Bayesian inference, the deep learning method, and the integration method, are presented as future directions for eQTL discovery. This review will help expedite the design and use of efficient methods for eQTL discovery and eTrait prediction.

摘要

表达数量性状基因座(eQTLs)及其靶基因(eGenes)的发现不仅弥补了全基因组关联研究对复杂表型的局限性,也为预测基因表达提供了依据。在统计遗传学这一 eQTL 分析的关键学科中,研究人员一直在努力开发分析方法。特别是基于混合模型和深度学习的分析方法在 eQTL 映射和基因表达预测方面非常有益。然而,我们仍然面临着与 eQTL 发现相关的许多挑战。在这里,我们讨论了这些挑战的两个关键方面:1、eTrait 的复杂性,如多效性和上位性等各种因素;2、各种类型的 eQTL 图谱所需的大量工作。本文介绍了统计方法的特性和前景,包括混合模型方法、贝叶斯推断、深度学习方法和整合方法,作为 eQTL 发现的未来方向。本综述将有助于加快 eQTL 发现和 eTrait 预测的高效方法的设计和使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0878/8871770/f9d7ffaa0129/genes-13-00235-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验