Suppr超能文献

用于模拟生物分子扩散 - 反应过程的泊松 - 能斯特 - 普朗克方程I:有限元解

Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions.

作者信息

Lu Benzhuo, Holst Michael J, McCammon J Andrew, Zhou Y C

机构信息

State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

J Comput Phys. 2010 Sep 20;229(19):6979-6994. doi: 10.1016/j.jcp.2010.05.035.

Abstract

In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.

摘要

在本文中,我们开发了精确的有限元方法,用于求解三维泊松-能斯特-普朗克(PNP)方程,该方程用于描述溶剂化生物分子系统中的电扩散过程,其中包含奇异的永久电荷。静电泊松方程在生物分子和溶剂中定义,而能斯特-普朗克方程仅在溶剂中定义。我们应用了一种稳定的正则化方案来消除生物分子内部永久电荷引起的静电势的奇异分量,并构建了正则的、适定的PNP方程。对于稳态问题,我们使用了一种不精确牛顿法来求解耦合的非线性椭圆方程;而对于非稳态电扩散问题,我们设计了一种亚当斯-巴什福思-克兰克-尼科尔森方法进行时间积分。我们对能斯特-普朗克方程两种形式的有限元近似刚度矩阵的条件数进行了数值研究,并从理论上证明了变换后的形式总是与一个病态刚度矩阵相关联。我们还研究了解的电中性及其与分子表面边界条件的关系,并得出结论,由于溶液中存在多种带电粒子,分子表面附近总是存在较大的净电荷浓度。通过各种测试问题表明,这些数值方法是准确且稳定的,适用于实际的大规模生物物理电扩散问题。

相似文献

4
Poisson-Boltzmann-Nernst-Planck model.泊松-玻尔兹曼-纳恩斯特-普朗克模型。
J Chem Phys. 2011 May 21;134(19):194101. doi: 10.1063/1.3581031.
8
Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.稳态泊松-能斯特-普朗克系统的奇异摄动解
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022722. doi: 10.1103/PhysRevE.89.022722. Epub 2014 Feb 26.

引用本文的文献

6
Improved Poisson-Boltzmann Methods for High-Performance Computing.改进的泊松-玻尔兹曼方法用于高性能计算。
J Chem Theory Comput. 2019 Nov 12;15(11):6190-6202. doi: 10.1021/acs.jctc.9b00602. Epub 2019 Sep 30.
7
An efficient second-order poisson-boltzmann method.一种高效的二阶泊松-玻尔兹曼方法。
J Comput Chem. 2019 May 5;40(12):1257-1269. doi: 10.1002/jcc.25783. Epub 2019 Feb 18.
10
A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins.一种用于膜通道蛋白的连续泊松-玻尔兹曼模型。
J Chem Theory Comput. 2017 Jul 11;13(7):3398-3412. doi: 10.1021/acs.jctc.7b00382. Epub 2017 Jun 14.

本文引用的文献

5
Ephaptic conduction in a cardiac strand model with 3D electrodiffusion.具有三维电扩散的心脏束模型中的电场传导。
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6463-8. doi: 10.1073/pnas.0801089105. Epub 2008 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验