Suppr超能文献

用于模拟生物分子扩散 - 反应过程的泊松 - 能斯特 - 普朗克方程I:有限元解

Poisson-Nernst-Planck Equations for Simulating Biomolecular Diffusion-Reaction Processes I: Finite Element Solutions.

作者信息

Lu Benzhuo, Holst Michael J, McCammon J Andrew, Zhou Y C

机构信息

State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

J Comput Phys. 2010 Sep 20;229(19):6979-6994. doi: 10.1016/j.jcp.2010.05.035.

Abstract

In this paper we developed accurate finite element methods for solving 3-D Poisson-Nernst-Planck (PNP) equations with singular permanent charges for electrodiffusion in solvated biomolecular systems. The electrostatic Poisson equation was defined in the biomolecules and in the solvent, while the Nernst-Planck equation was defined only in the solvent. We applied a stable regularization scheme to remove the singular component of the electrostatic potential induced by the permanent charges inside biomolecules, and formulated regular, well-posed PNP equations. An inexact-Newton method was used to solve the coupled nonlinear elliptic equations for the steady problems; while an Adams-Bashforth-Crank-Nicolson method was devised for time integration for the unsteady electrodiffusion. We numerically investigated the conditioning of the stiffness matrices for the finite element approximations of the two formulations of the Nernst-Planck equation, and theoretically proved that the transformed formulation is always associated with an ill-conditioned stiffness matrix. We also studied the electroneutrality of the solution and its relation with the boundary conditions on the molecular surface, and concluded that a large net charge concentration is always present near the molecular surface due to the presence of multiple species of charged particles in the solution. The numerical methods are shown to be accurate and stable by various test problems, and are applicable to real large-scale biophysical electrodiffusion problems.

摘要

在本文中,我们开发了精确的有限元方法,用于求解三维泊松-能斯特-普朗克(PNP)方程,该方程用于描述溶剂化生物分子系统中的电扩散过程,其中包含奇异的永久电荷。静电泊松方程在生物分子和溶剂中定义,而能斯特-普朗克方程仅在溶剂中定义。我们应用了一种稳定的正则化方案来消除生物分子内部永久电荷引起的静电势的奇异分量,并构建了正则的、适定的PNP方程。对于稳态问题,我们使用了一种不精确牛顿法来求解耦合的非线性椭圆方程;而对于非稳态电扩散问题,我们设计了一种亚当斯-巴什福思-克兰克-尼科尔森方法进行时间积分。我们对能斯特-普朗克方程两种形式的有限元近似刚度矩阵的条件数进行了数值研究,并从理论上证明了变换后的形式总是与一个病态刚度矩阵相关联。我们还研究了解的电中性及其与分子表面边界条件的关系,并得出结论,由于溶液中存在多种带电粒子,分子表面附近总是存在较大的净电荷浓度。通过各种测试问题表明,这些数值方法是准确且稳定的,适用于实际的大规模生物物理电扩散问题。

相似文献

1
3
A stabilized finite volume element method for solving Poisson-Nernst-Planck equations.
Int J Numer Method Biomed Eng. 2022 Jan;38(1):e3543. doi: 10.1002/cnm.3543. Epub 2021 Nov 18.
4
Poisson-Boltzmann-Nernst-Planck model.
J Chem Phys. 2011 May 21;134(19):194101. doi: 10.1063/1.3581031.
8
Singular perturbation solutions of steady-state Poisson-Nernst-Planck systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022722. doi: 10.1103/PhysRevE.89.022722. Epub 2014 Feb 26.
9
Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach.
J Phys Chem B. 2008 Jan 17;112(2):270-5. doi: 10.1021/jp074900e. Epub 2007 Dec 5.
10
Decoupling of the nernst-planck and poisson equations. Application to a membrane system at overlimiting currents.
J Phys Chem B. 2007 Dec 27;111(51):14208-22. doi: 10.1021/jp073103d. Epub 2007 Dec 4.

引用本文的文献

1
Investigate channel rectifications and neural dynamics by an electrodiffusive Gauss-Nernst-Planck approach.
PLoS Comput Biol. 2025 Jun 30;21(6):e1012883. doi: 10.1371/journal.pcbi.1012883. eCollection 2025 Jun.
2
An Algorithm Based on a Cable-Nernst Planck Model Predicting Synaptic Activity throughout the Dendritic Arbor with Micron Specificity.
Neuroinformatics. 2023 Jan;21(1):207-220. doi: 10.1007/s12021-022-09609-z. Epub 2022 Nov 8.
3
Molecular Mean-Field Theory of Ionic Solutions: A Poisson-Nernst-Planck-Bikerman Model.
Entropy (Basel). 2020 May 14;22(5):550. doi: 10.3390/e22050550.
4
Co-localization and confinement of ecto-nucleotidases modulate extracellular adenosine nucleotide distributions.
PLoS Comput Biol. 2020 Jun 25;16(6):e1007903. doi: 10.1371/journal.pcbi.1007903. eCollection 2020 Jun.
5
Frontiers in biomolecular mesh generation and molecular visualization systems.
Vis Comput Ind Biomed Art. 2018 Sep 5;1(1):7. doi: 10.1186/s42492-018-0007-0.
6
Improved Poisson-Boltzmann Methods for High-Performance Computing.
J Chem Theory Comput. 2019 Nov 12;15(11):6190-6202. doi: 10.1021/acs.jctc.9b00602. Epub 2019 Sep 30.
7
An efficient second-order poisson-boltzmann method.
J Comput Chem. 2019 May 5;40(12):1257-1269. doi: 10.1002/jcc.25783. Epub 2019 Feb 18.
8
Robustness and Efficiency of Poisson-Boltzmann Modeling on Graphics Processing Units.
J Chem Inf Model. 2019 Jan 28;59(1):409-420. doi: 10.1021/acs.jcim.8b00761. Epub 2018 Dec 31.
10
A Continuum Poisson-Boltzmann Model for Membrane Channel Proteins.
J Chem Theory Comput. 2017 Jul 11;13(7):3398-3412. doi: 10.1021/acs.jctc.7b00382. Epub 2017 Jun 14.

本文引用的文献

1
Optimization of Gaussian surface calculations and extension to solvent-accessible surface areas.
J Comput Chem. 1999 May;20(7):688-703. doi: 10.1002/(SICI)1096-987X(199905)20:7<688::AID-JCC4>3.0.CO;2-F.
2
Finite-difference solution of the Poisson-Boltzmann equation: Complete elimination of self-energy.
J Comput Chem. 1996 Aug;17(11):1344-51. doi: 10.1002/(SICI)1096-987X(199608)17:11<1344::AID-JCC7>3.0.CO;2-M.
3
ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION.
Commun Comput Phys. 2012;11(1):179-214. doi: 10.4208/cicp.081009.130611a.
4
Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore.
PLoS Comput Biol. 2009 Jan;5(1):e1000277. doi: 10.1371/journal.pcbi.1000277. Epub 2009 Jan 30.
5
Ephaptic conduction in a cardiac strand model with 3D electrodiffusion.
Proc Natl Acad Sci U S A. 2008 Apr 29;105(17):6463-8. doi: 10.1073/pnas.0801089105. Epub 2008 Apr 23.
6
Continuum simulations of acetylcholine consumption by acetylcholinesterase: a Poisson-Nernst-Planck approach.
J Phys Chem B. 2008 Jan 17;112(2):270-5. doi: 10.1021/jp074900e. Epub 2007 Dec 5.
8
Highly accurate biomolecular electrostatics in continuum dielectric environments.
J Comput Chem. 2008 Jan 15;29(1):87-97. doi: 10.1002/jcc.20769.
10
Finite element solution of the steady-state Smoluchowski equation for rate constant calculations.
Biophys J. 2004 Apr;86(4):2017-29. doi: 10.1016/S0006-3495(04)74263-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验