Suppr超能文献

多尺度模型中的空间尺度:结合基于Agent 的和有限元模型方法进行伤口愈合模拟。

Spatial scaling in multiscale models: methods for coupling agent-based and finite-element models of wound healing.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.

Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.

出版信息

Biomech Model Mechanobiol. 2019 Oct;18(5):1297-1309. doi: 10.1007/s10237-019-01145-1. Epub 2019 Apr 9.

Abstract

Multiscale models that couple agent-based modeling (ABM) and finite-element modeling (FEM) allow the dynamic simulation of tissue remodeling and wound healing, with mechanical environment influencing cellular behaviors even as tissue remodeling modifies mechanics. One of the challenges in coupling ABM to FEM is that these two domains typically employ grid or element sizes that differ by several orders of magnitude. Here, we develop and demonstrate an interpolation-based method for mapping between ABM and FEM domains of different resolutions that is suitable for linear and nonlinear FEM meshes and balances accuracy with computational demands. We then explore the effects of refining the FEM mesh and the ABM grid in the setting of a fully coupled model. ABM grid refinement studies showed unexpected effects of grid size whenever cells were present at a high enough density for crowding to affect proliferation and migration. In contrast to an FE-only model, refining the FE mesh in the coupled model increased strain differences between adjacent finite elements. Allowing strain-dependent feedback on collagen turnover magnified the effects of regional heterogeneity, producing highly nonlinear spatial and temporal responses. Our results suggest that the choice of both ABM grid and FEM mesh density in coupled models must be guided by experimental data and accompanied by careful grid and mesh refinement studies in the individual domains as well as the fully coupled model.

摘要

多尺度模型将基于主体的建模(ABM)和有限元建模(FEM)耦合,允许对组织重塑和伤口愈合进行动态模拟,即使组织重塑改变力学特性,机械环境也会影响细胞行为。将 ABM 与 FEM 耦合的挑战之一在于,这两个领域通常采用网格或元素大小相差几个数量级。在这里,我们开发并展示了一种基于插值的方法,用于在不同分辨率的 ABM 和 FEM 域之间进行映射,该方法适用于线性和非线性 FEM 网格,并在准确性和计算需求之间取得平衡。然后,我们在完全耦合模型中探讨了细化 FEM 网格和 ABM 网格的效果。ABM 网格细化研究表明,只要细胞的密度足够高,以至于拥挤会影响增殖和迁移,那么网格大小就会产生意想不到的影响。与仅使用 FE 的模型相比,在耦合模型中细化 FE 网格会增加相邻有限元之间的应变差异。允许对胶原转化的应变依赖性反馈放大了区域异质性的影响,产生了高度非线性的时空响应。我们的结果表明,在耦合模型中,ABM 网格和 FEM 网格密度的选择都必须由实验数据来指导,并伴随着在单独的域以及完全耦合模型中进行仔细的网格和网格细化研究。

相似文献

3
Tissue Engineering: A Coupled Agent-Based Finite Element Approach.组织工程学:基于耦合代理的有限元方法。
Tissue Eng Part C Methods. 2019 Nov;25(11):641-654. doi: 10.1089/ten.TEC.2019.0103. Epub 2019 Sep 20.
8
Mechanobiological model of arterial growth and remodeling.动脉生长和重塑的生物力学模型。
Biomech Model Mechanobiol. 2018 Feb;17(1):87-101. doi: 10.1007/s10237-017-0946-y. Epub 2017 Aug 19.

引用本文的文献

5
Multi-scale models of lung fibrosis.肺纤维化的多尺度模型。
Matrix Biol. 2020 Sep;91-92:35-50. doi: 10.1016/j.matbio.2020.04.003. Epub 2020 May 11.

本文引用的文献

6
FEBio: finite elements for biomechanics.FEBio:生物力学有限元
J Biomech Eng. 2012 Jan;134(1):011005. doi: 10.1115/1.4005694.
8
Biased three-dimensional cell migration and collagen matrix modification.偏向性三维细胞迁移和胶原基质修饰。
Math Biosci. 2011 Jun;231(2):105-19. doi: 10.1016/j.mbs.2011.02.007. Epub 2011 Feb 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验