Suppr超能文献

用于单细胞组学和多组学应用的集成流体回路。

Integrated Fluidic Circuits for Single-Cell Omics and Multi-omics Applications.

机构信息

Fluidigm Corporation, South San Francisco, CA, USA.

出版信息

Adv Exp Med Biol. 2019;1129:19-26. doi: 10.1007/978-981-13-6037-4_2.

Abstract

Single-cell genomics plays a crucial role in several aspects of biology, from developmental biology to mapping every cell in the human body through the Cell Atlas initiative. To meet these various applications, single-cell methods are rapidly evolving to increase throughput; improve sensitivity, quantification accuracy, and usability; and reduce nucleic-acid amplification bias and cost. In addition to improvement in single-cell methods, there is a huge interest in analyzing multiple analytes such as genome, epigenome, transcriptome, and protein from the same single cell. This approach is generalized as single-cell multi-omics. Automation of multi-step single-cell methods is highly desired to achieve a reproducible workflow; reduce human error and avoid contamination; and introduce technical variability to an existing stochastic process. Typically single-cell reactions start with a low level of nucleic acid, in the range of picograms. Miniaturization in microfluidic devices leads to a gain in reaction efficiency in Nanoliter or picoliter reaction volumes and active mixing help ensure that solid-state microfluidic devices provide the broadest flexibility and best sensitivity in single-cell reactions, compared to other methods. In this chapter, we will present integrated fluidic circuit (IFC) microfluidics for various single-cell multi-omics applications, and show how this technology fits into the current single-cell technology portfolio available from various vendors. We will then discuss possible uses for IFCs in multi-omics applications that are on the horizon.

摘要

单细胞基因组学在生物学的多个方面发挥着关键作用,从发育生物学到通过细胞图谱计划绘制人体每个细胞。为了满足这些各种应用,单细胞方法正在迅速发展,以提高通量;提高灵敏度、定量准确性和可用性;并减少核酸扩增偏差和成本。除了单细胞方法的改进外,人们还对从同一个单细胞中分析多个分析物(如基因组、表观基因组、转录组和蛋白质)产生了浓厚的兴趣。这种方法被概括为单细胞多组学。为了实现可重复的工作流程;减少人为错误和避免污染;并将技术可变性引入现有的随机过程,高度需要自动化多步单细胞方法。通常,单细胞反应从皮克数量级的低核酸水平开始。在纳升或皮升反应体积中,微流控设备的小型化导致反应效率提高,主动混合有助于确保与其他方法相比,固态微流控设备在单细胞反应中提供最广泛的灵活性和最佳灵敏度。在本章中,我们将介绍用于各种单细胞多组学应用的集成流体电路 (IFC) 微流控技术,并展示该技术如何适应来自各种供应商的当前单细胞技术组合。然后,我们将讨论 IFC 在多组学应用中的可能用途,这些应用即将出现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验