Department of Biomedical Engineering, City College of New York, New York, NY 10031, USA.
Department of Biomedical Engineering, The State University of New York at Binghamton, NY 13902, USA.
Cells. 2019 Oct 22;8(10):1301. doi: 10.3390/cells8101301.
Regenerative retinal therapies have introduced progenitor cells to replace dysfunctional or injured neurons and regain visual function. While contemporary cell replacement therapies have delivered retinal progenitor cells (RPCs) within customized biomaterials to promote viability and enable transplantation, outcomes have been severely limited by the misdirected and/or insufficient migration of transplanted cells. RPCs must achieve appropriate spatial and functional positioning in host retina, collectively, to restore vision, whereas movement of clustered cells differs substantially from the single cell migration studied in classical chemotaxis models. Defining how RPCs interact with each other, neighboring cell types and surrounding extracellular matrixes are critical to our understanding of retinogenesis and the development of effective, cell-based approaches to retinal replacement. The current article describes a new bio-engineering approach to investigate the migratory responses of innate collections of RPCs upon extracellular substrates by combining microfluidics with the well-established invertebrate model of Drosophila melanogaster. Experiments utilized microfluidics to investigate how the composition, size, and adhesion of RPC clusters on defined extracellular substrates affected migration to exogenous chemotactic signaling. Results demonstrated that retinal cluster size and composition influenced RPC clustering upon extracellular substrates of concanavalin (Con-A), Laminin (LM), and poly-L-lysine (PLL), and that RPC cluster size greatly altered collective migratory responses to signaling from Fibroblast Growth Factor (FGF), a primary chemotactic agent in Drosophila. These results highlight the significance of examining collective cell-biomaterial interactions on bio-substrates of emerging biomaterials to aid directional migration of transplanted cells. Our approach further introduces the benefits of pairing genetically controlled models with experimentally controlled microenvironments to advance cell replacement therapies.
再生视网膜疗法引入前体细胞以替代功能失调或受损的神经元并恢复视觉功能。虽然当代细胞替代疗法已经将视网膜祖细胞 (RPC) 递送至定制生物材料中以促进存活并实现移植,但由于移植细胞的定向和/或不足够的迁移,结果受到严重限制。RPC 必须在宿主视网膜中实现适当的空间和功能定位,以恢复视力,而聚集细胞的运动与经典趋化性模型中研究的单细胞迁移有很大不同。定义 RPC 如何与彼此、相邻细胞类型和周围细胞外基质相互作用对于我们理解视网膜发生以及开发有效的基于细胞的视网膜替代方法至关重要。本文描述了一种新的生物工程方法,通过将微流控技术与成熟的黑腹果蝇无脊椎动物模型相结合,来研究天然集合的 RPC 在外源细胞外基质上的迁移反应。实验利用微流控技术研究了 RPC 簇在定义的细胞外基质上的组成、大小和粘附如何影响对外源趋化信号的迁移。结果表明,视网膜簇的大小和组成影响了 RPC 在细胞外基质上的聚集,这些基质包括伴刀豆球蛋白 (Con-A)、层粘连蛋白 (LM) 和多聚赖氨酸 (PLL),并且 RPC 簇的大小极大地改变了对成纤维细胞生长因子 (FGF) 的信号的集体迁移反应,FGF 是果蝇中的主要趋化因子。这些结果强调了在新兴生物材料的生物基质上检查集体细胞-生物材料相互作用以辅助移植细胞的定向迁移的重要性。我们的方法进一步介绍了将遗传控制的模型与实验控制的微环境相结合以推进细胞替代疗法的优势。