Suppr超能文献

等离子体纳米腔实现自感应静电催化。

Plasmonic Nanocavities Enable Self-Induced Electrostatic Catalysis.

作者信息

Climent Clàudia, Galego Javier, Garcia-Vidal Francisco J, Feist Johannes

机构信息

Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain.

出版信息

Angew Chem Int Ed Engl. 2019 Jun 24;58(26):8698-8702. doi: 10.1002/anie.201901926. Epub 2019 May 21.

Abstract

The potential of strong interactions between light and matter remains to be further explored within a chemical context. Towards this end herein we study the electromagnetic interaction between molecules and plasmonic nanocavities. By means of electronic structure calculations, we show that self-induced catalysis emerges without any external stimuli through the interaction of the molecular permanent and fluctuating dipole moments with the plasmonic cavity modes. We also exploit this scheme to modify the transition temperature T of spin-crossover complexes as an example of how strong light-matter interactions can ultimately be used to control a materials responses.

摘要

在化学背景下,光与物质之间强相互作用的潜力仍有待进一步探索。为此,我们在此研究分子与等离子体纳米腔之间的电磁相互作用。通过电子结构计算,我们表明,通过分子永久偶极矩和波动偶极矩与等离子体腔模的相互作用,在没有任何外部刺激的情况下会出现自诱导催化。我们还利用这一方案来改变自旋交叉配合物的转变温度T,以此为例说明强光与物质相互作用最终如何用于控制材料的响应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c9e5/6973273/1884502a30dd/ANIE-58-8698-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验