Fregoni Jacopo, Haugland Tor S, Pipolo Silvio, Giovannini Tommaso, Koch Henrik, Corni Stefano
Dipartimento di Scienze Chimiche, University of Padova, I-35131 Padova, Italy.
Institute of Nanosciences, Consiglio Nazionale delle Ricerche CNR-Nano, I-41125 Modena, Italy.
Nano Lett. 2021 Aug 11;21(15):6664-6670. doi: 10.1021/acs.nanolett.1c02162. Epub 2021 Jul 20.
Plasmonic nanocavities enable the confinement of molecules and electromagnetic fields within nanometric volumes. As a consequence, the molecules experience a remarkably strong interaction with the electromagnetic field to such an extent that the quantum states of the system become hybrids between light and matter: polaritons. Here, we present a nonperturbative method to simulate the emerging properties of such polaritons: it combines a high-level quantum chemical description of the molecule with a quantized description of the localized surface plasmons in the nanocavity. We apply the method to molecules of realistic complexity in a typical plasmonic nanocavity, featuring also a subnanometric asperity (picocavity). Our results disclose the effects of the mutual polarization and correlation of plasmons and molecular excitations, disregarded so far. They also quantify to what extent the molecular charge density can be manipulated by nanocavities and stand as benchmarks to guide the development of methods for molecular polaritonics.
等离子体纳米腔能够将分子和电磁场限制在纳米体积内。因此,分子与电磁场经历了非常强烈的相互作用,以至于系统的量子态成为光与物质之间的混合体:极化激元。在这里,我们提出了一种非微扰方法来模拟此类极化激元的新兴特性:它将分子的高级量子化学描述与纳米腔内局域表面等离子体的量子化描述相结合。我们将该方法应用于典型等离子体纳米腔中具有实际复杂性的分子,该纳米腔还具有亚纳米级粗糙度(皮秒腔)。我们的结果揭示了等离子体与分子激发的相互极化和相关性的影响,而这些影响迄今为止一直被忽视。它们还量化了纳米腔可以在多大程度上操纵分子电荷密度,并作为指导分子极化激元学方法发展的基准。