Suppr超能文献

使用激光烧蚀在可生物降解材料上直接微加工微流体通道

Direct Micromachining of Microfluidic Channels on Biodegradable Materials Using Laser Ablation.

作者信息

Hsieh Yi-Kong, Chen Shiau-Chen, Huang Wen-Ling, Hsu Kai-Ping, Gorday Kaiser Alejandro Villalobos, Wang Tsinghai, Wang Jane

机构信息

Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.

Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.

出版信息

Polymers (Basel). 2017 Jun 23;9(7):242. doi: 10.3390/polym9070242.

Abstract

Laser patterning on polymeric materials is considered a green and rapid manufacturing process with low material selection barrier and high adjustability. Unlike microelectromechanical systems (MEMS), it is a highly flexible processing method, especially useful for prototyping. This study focuses on the development of polymer surface modification method using a 193 nm excimer laser system for the design and fabrication of a microfluidic system similar to that of natural vasculatures. Besides from poly(dimethyl siloxane) (PDMS), laser ablation on biodegradable polymeric material, poly(glycerol sebacate) (PGS) and poly(1,3-diamino-2-hydroxypropane--polyol sebacate) (APS) are investigated. Parameters of laser ablation and fabrication techniques to create microchannels are discussed. The results show that nano/micro-sized fractures and cracks are generally observed across PDMS surface after laser ablation, but not on PGS and APS surfaces. The widths of channels are more precise on PGS and APS than those on PDMS. Laser beam size and channel depth are high correlation with a linear relationship. Repeated laser ablations on the same position of scaffolds reveal that the ablation efficiencies and edge quality on PGS and APS are higher than on PDMS, suggesting the high applicability of direct laser machining to PGS and APS. To ensure stable ablation efficiency, effects of defocus distance into polymer surfaces toward laser ablation stability are investigated. The depth of channel is related to the ratio of firing frequency and ablation progression speed. The hydrodynamic simulation of channels suggests that natural blood vessel is similar to the laser patterned U-shaped channels, and the resulting micro-patterns are highly applicable in the field of micro-fabrication and biomedical engineering.

摘要

聚合物材料上的激光图案化被认为是一种绿色且快速的制造工艺,具有低材料选择门槛和高可调节性。与微机电系统(MEMS)不同,它是一种高度灵活的加工方法,尤其适用于原型制作。本研究聚焦于利用193nm准分子激光系统开发聚合物表面改性方法,以设计和制造类似于天然脉管系统的微流体系统。除了聚二甲基硅氧烷(PDMS),还研究了可生物降解聚合物材料聚癸二酸甘油酯(PGS)和聚(1,3 - 二氨基 - 2 - 羟基丙烷 - 聚癸二酸酯)(APS)上的激光烧蚀。讨论了激光烧蚀参数以及制造微通道的技术。结果表明,激光烧蚀后,PDMS表面通常会观察到纳米/微米级的裂缝和裂纹,但PGS和APS表面没有。PGS和APS上通道的宽度比PDMS上的更精确。激光束尺寸与通道深度具有高度相关性且呈线性关系。在支架的同一位置重复进行激光烧蚀表明,PGS和APS上的烧蚀效率和边缘质量高于PDMS,这表明直接激光加工对PGS和APS具有很高的适用性。为确保稳定的烧蚀效率,研究了聚合物表面的离焦距离对激光烧蚀稳定性的影响。通道深度与发射频率和烧蚀推进速度的比值有关。通道的流体动力学模拟表明,天然血管类似于激光图案化的U形通道,所产生的微图案在微制造和生物医学工程领域具有很高的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/727f/6432037/dcd9744c43ac/polymers-09-00242-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验