Kim Seong-Yeop, Son Han-Byeol, Lim Hyo-Ryoung
Department of Chemical Engineering, College of Engineering, Pukyong National University, Busan 48513, Republic of Korea.
Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea.
Micromachines (Basel). 2025 Feb 28;16(3):282. doi: 10.3390/mi16030282.
Recent advancements in microfluidic technologies have revolutionized their applications, particularly in drug monitoring, continuous biochemical analysis, and real-time physiological assessments. However, the fabrication of microfluidic devices with precise flow control remains constrained by either cost-prohibitive photolithography processes or limited-precision 3D printing techniques. In this study, we propose a one-step fabrication method employing picosecond laser processing to directly create microfluidic channels in (PDMS). This method achieves micron-scale channel precision while significantly simplifying the fabrication process and reducing costs. This approach eliminates the need for additional encapsulation steps, further reducing contamination risks and improving production scalability. These findings highlight the potential of this fabrication method to advance next-generation wearable biochemical devices and personalized healthcare technologies.
微流控技术的最新进展彻底改变了其应用,尤其是在药物监测、连续生化分析和实时生理评估方面。然而,制造具有精确流量控制的微流控设备仍然受到成本高昂的光刻工艺或精度有限的3D打印技术的限制。在本研究中,我们提出了一种采用皮秒激光加工的一步制造方法,以直接在聚二甲基硅氧烷(PDMS)中创建微流控通道。该方法实现了微米级通道精度,同时显著简化了制造过程并降低了成本。这种方法无需额外的封装步骤,进一步降低了污染风险并提高了生产可扩展性。这些发现凸显了这种制造方法在推动下一代可穿戴生化设备和个性化医疗技术方面的潜力。