Suppr超能文献

铱催化未活化芳环中的 C-H 硅烷化反应:空间位阻较大的菲咯啉配体加速催化。

Iridium-Catalyzed Silylation of C-H Bonds in Unactivated Arenes: A Sterically Encumbered Phenanthroline Ligand Accelerates Catalysis.

机构信息

Department of Chemistry , University of California , Berkeley , California 94720 , United States.

出版信息

J Am Chem Soc. 2019 May 1;141(17):7063-7072. doi: 10.1021/jacs.9b01972. Epub 2019 Apr 23.

Abstract

We report a new system for the silylation of aryl C-H bonds. The combination of [Ir(cod)(OMe)] and 2,9-Me-phenanthroline (2,9-Me-phen) catalyzes the silylation of arenes at lower temperatures and with faster rates than those reported previously, when the hydrogen byproduct is removed, and with high functional group tolerance and regioselectivity. Inhibition of reactions by the H byproduct is shown to limit the silylation of aryl C-H bonds in the presence of the most active catalysts, thereby masking their high activity. Analysis of initial rates uncovered the high reactivity of the catalyst containing the sterically hindered 2,9-Me-phen ligand but accompanying rapid inhibition by hydrogen. With this catalyst, under a flow of nitrogen to remove hydrogen, electron-rich arenes, including those containing sensitive functional groups, undergo silylation in high yield for the first time, and arenes that underwent silylation with prior catalysts react over much shorter times with lower catalyst loadings. The synthetic value of this methodology is demonstrated by the preparation of key intermediates in the synthesis of medicinally important compounds in concise sequences comprising silylation and functionalization. Mechanistic studies demonstrate that the cleavage of the aryl C-H bond is reversible and that the higher rates observed with the 2,9-Me-phen ligand are due to a more thermodynamically favorable oxidative addition of aryl C-H bonds.

摘要

我们报告了一种新的芳基 C-H 键硅烷化系统。[Ir(cod)(OMe)]和 2,9-Me-菲咯啉(2,9-Me-phen)的组合在去除氢副产物时,以比以前报道的更低的温度和更快的速度催化芳基的硅烷化,具有高官能团耐受性和区域选择性。反应受到氢副产物的抑制表明,在最活跃的催化剂存在下,芳基 C-H 键的硅烷化受到限制,从而掩盖了它们的高活性。对初始速率的分析揭示了含有空间位阻的 2,9-Me-phen 配体的催化剂具有高反应性,但伴随有氢的快速抑制。使用这种催化剂,在氮气的流动下去除氢,可以首次以高收率对富电子芳族化合物进行硅烷化,包括那些含有敏感官能团的芳族化合物,并且与以前的催化剂反应的芳族化合物的反应时间更短,催化剂负载量更低。该方法的合成价值通过在药物重要化合物的合成中以简洁的硅烷化和官能化序列制备关键中间体得到证明。机理研究表明,芳基 C-H 键的断裂是可逆的,并且 2,9-Me-phen 配体观察到的更高速率归因于芳基 C-H 键的更热力学有利的氧化加成。

相似文献

2
Mechanism of the Iridium-Catalyzed Silylation of Aromatic C-H Bonds.铱催化芳基 C-H 硅烷化反应的机理。
J Am Chem Soc. 2020 Jun 10;142(23):10494-10505. doi: 10.1021/jacs.0c03301. Epub 2020 May 21.
7
Iridium-catalyzed silylation of aryl C-H bonds.铱催化的芳基 C-H 硅烷化反应。
J Am Chem Soc. 2015 Jan 21;137(2):592-5. doi: 10.1021/ja511352u. Epub 2015 Jan 6.

引用本文的文献

4
The role of silicon in drug discovery: a review.硅在药物发现中的作用:综述
RSC Med Chem. 2024 Jul 1;15(10):3286-3344. doi: 10.1039/d4md00169a. eCollection 2024 Oct 17.
10
Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis.无机金属(过渡金属-类金属配合物)与催化。
Chem Rev. 2022 Feb 9;122(3):3996-4090. doi: 10.1021/acs.chemrev.1c00417. Epub 2021 Dec 30.

本文引用的文献

2
Doravirine: First Global Approval.多伟拉韦:全球首次获批。
Drugs. 2018 Oct;78(15):1643-1650. doi: 10.1007/s40265-018-0993-4.
4
Arene-Limited Nondirected C-H Activation of Arenes.芳烃受限的芳烃非定向C-H活化
Angew Chem Int Ed Engl. 2018 Oct 1;57(40):13016-13027. doi: 10.1002/anie.201804727. Epub 2018 Sep 11.
5
Mechanistic Study of Arylsilane Oxidation through F NMR Spectroscopy.芳基硅烷氧化的通过 F NMR 光谱学的机理研究。
J Am Chem Soc. 2017 May 3;139(17):6138-6145. doi: 10.1021/jacs.7b00357. Epub 2017 Apr 19.
6
Synthetic Approaches to the New Drugs Approved During 2015.2015年获批新药的合成方法
J Med Chem. 2017 Aug 10;60(15):6480-6515. doi: 10.1021/acs.jmedchem.7b00010. Epub 2017 May 3.
7
Copper-Mediated C-N Coupling of Arylsilanes with Nitrogen Nucleophiles.铜介导的芳基硅烷与氮亲核试剂的 C-N 偶联反应。
Org Lett. 2016 Oct 21;18(20):5244-5247. doi: 10.1021/acs.orglett.6b02543. Epub 2016 Sep 30.
9
Trifluoromethylation of Arylsilanes with [(phen)CuCF3 ].芳基硅烷的[(phen)CuCF3]三氟甲基化。
Angew Chem Int Ed Engl. 2016 Jul 4;55(28):8054-7. doi: 10.1002/anie.201601163. Epub 2016 May 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验