Johnson E C, Pak W L
J Gen Physiol. 1986 Nov;88(5):651-73. doi: 10.1085/jgp.88.5.651.
Electrophysiological investigations were carried out on several independently isolated mutants of the ninaE gene, which encodes opsin in R1-6 photoreceptors, and a mutant of the ninaD gene, which is probably important in the formation of the rhodopsin chromophore. In these mutants, the rhodopsin content in R1-6 photoreceptors is reduced by 10(2)-10(6)-fold. Light-induced bumps recorded from even the most severely affected mutants are physiologically normal. Moreover, a detailed noise analysis shows that photoreceptor responses of both a ninaE mutant and a ninaD mutant follow the adapting bump model. Since any extensive rhodopsin-rhodopsin interactions are not likely in these mutants, the above results suggest that such interactions are not needed for the generation and adaptation of light-induced bumps. Mutant bumps are strikingly larger in amplitude than wild-type bumps. This difference is observed both in ninaD and ninaE mutants, which suggests that it is due to severe depletion of rhodopsin content, rather than to any specific alterations in the opsin protein. Lowering or buffering the intracellular calcium concentration by EGTA injection mimics the effects of the mutations on the bump amplitude, but, unlike the mutations, it also affects the latency and kinetics of light responses.
对几个独立分离的ninaE基因突变体进行了电生理研究,该基因在R1 - 6光感受器中编码视蛋白,还研究了ninaD基因突变体,其可能在视紫红质发色团的形成中起重要作用。在这些突变体中,R1 - 6光感受器中的视紫红质含量减少了10² - 10⁶倍。即使是受影响最严重的突变体记录到的光诱导凸起在生理上也是正常的。此外,详细的噪声分析表明,ninaE突变体和ninaD突变体的光感受器反应均遵循适应性凸起模型。由于在这些突变体中不太可能存在广泛的视紫红质 - 视紫红质相互作用,上述结果表明,这种相互作用对于光诱导凸起的产生和适应并非必需。突变体的凸起幅度明显大于野生型凸起。在ninaD和ninaE突变体中均观察到这种差异,这表明这是由于视紫红质含量的严重减少,而不是视蛋白的任何特定改变。通过注射EGTA降低或缓冲细胞内钙浓度模拟了突变对凸起幅度的影响,但与突变不同的是,它还影响光反应的潜伏期和动力学。