Suppr超能文献

果蝇视紫红质突变体的电生理研究。

Electrophysiological study of Drosophila rhodopsin mutants.

作者信息

Johnson E C, Pak W L

出版信息

J Gen Physiol. 1986 Nov;88(5):651-73. doi: 10.1085/jgp.88.5.651.

Abstract

Electrophysiological investigations were carried out on several independently isolated mutants of the ninaE gene, which encodes opsin in R1-6 photoreceptors, and a mutant of the ninaD gene, which is probably important in the formation of the rhodopsin chromophore. In these mutants, the rhodopsin content in R1-6 photoreceptors is reduced by 10(2)-10(6)-fold. Light-induced bumps recorded from even the most severely affected mutants are physiologically normal. Moreover, a detailed noise analysis shows that photoreceptor responses of both a ninaE mutant and a ninaD mutant follow the adapting bump model. Since any extensive rhodopsin-rhodopsin interactions are not likely in these mutants, the above results suggest that such interactions are not needed for the generation and adaptation of light-induced bumps. Mutant bumps are strikingly larger in amplitude than wild-type bumps. This difference is observed both in ninaD and ninaE mutants, which suggests that it is due to severe depletion of rhodopsin content, rather than to any specific alterations in the opsin protein. Lowering or buffering the intracellular calcium concentration by EGTA injection mimics the effects of the mutations on the bump amplitude, but, unlike the mutations, it also affects the latency and kinetics of light responses.

摘要

对几个独立分离的ninaE基因突变体进行了电生理研究,该基因在R1 - 6光感受器中编码视蛋白,还研究了ninaD基因突变体,其可能在视紫红质发色团的形成中起重要作用。在这些突变体中,R1 - 6光感受器中的视紫红质含量减少了10² - 10⁶倍。即使是受影响最严重的突变体记录到的光诱导凸起在生理上也是正常的。此外,详细的噪声分析表明,ninaE突变体和ninaD突变体的光感受器反应均遵循适应性凸起模型。由于在这些突变体中不太可能存在广泛的视紫红质 - 视紫红质相互作用,上述结果表明,这种相互作用对于光诱导凸起的产生和适应并非必需。突变体的凸起幅度明显大于野生型凸起。在ninaD和ninaE突变体中均观察到这种差异,这表明这是由于视紫红质含量的严重减少,而不是视蛋白的任何特定改变。通过注射EGTA降低或缓冲细胞内钙浓度模拟了突变对凸起幅度的影响,但与突变不同的是,它还影响光反应的潜伏期和动力学。

相似文献

1
Electrophysiological study of Drosophila rhodopsin mutants.
J Gen Physiol. 1986 Nov;88(5):651-73. doi: 10.1085/jgp.88.5.651.
4
Rhodopsin activation causes retinal degeneration in Drosophila rdgC mutant.
Neuron. 1990 Jun;4(6):883-90. doi: 10.1016/0896-6273(90)90141-2.
5
6
Degeneration of photoreceptors in rhodopsin mutants of Drosophila.
J Neurobiol. 1992 Aug;23(6):605-26. doi: 10.1002/neu.480230602.
7
Molecular defects in Drosophila rhodopsin mutants.
J Biol Chem. 1989 Sep 15;264(26):15464-6.
9
Single photon responses in Drosophila photoreceptors and their regulation by Ca2+.
J Physiol. 2000 Apr 1;524 Pt 1(Pt 1):179-94. doi: 10.1111/j.1469-7793.2000.00179.x.

引用本文的文献

1
Progressive mitochondrial dysfunction impairs visual signal transduction and induces retinal degeneration in .
Front Insect Sci. 2025 Jul 28;5:1596020. doi: 10.3389/finsc.2025.1596020. eCollection 2025.
2
Temperature and Sweet Taste Integration in Drosophila.
Curr Biol. 2020 Jun 8;30(11):2051-2067.e5. doi: 10.1016/j.cub.2020.03.066. Epub 2020 Apr 23.
3
Sequence, Structure, and Expression of Opsins in the Monochromatic Stomatopod Squilla empusa.
Integr Comp Biol. 2018 Sep 1;58(3):386-397. doi: 10.1093/icb/icy007.
4
Cellular evidence for efference copy in Drosophila visuomotor processing.
Nat Neurosci. 2015 Sep;18(9):1247-55. doi: 10.1038/nn.4083. Epub 2015 Aug 3.
5
Loss of Na(+)/K(+)-ATPase in Drosophila photoreceptors leads to blindness and age-dependent neurodegeneration.
Exp Neurol. 2014 Nov;261:791-801. doi: 10.1016/j.expneurol.2014.08.025. Epub 2014 Sep 7.
6
PDA (prolonged depolarizing afterpotential)-defective mutants: the story of nina's and ina's--pinta and santa maria, too.
J Neurogenet. 2012 Jun;26(2):216-37. doi: 10.3109/01677063.2011.642430. Epub 2012 Jan 27.
7
A Drosophila metallophosphoesterase mediates deglycosylation of rhodopsin.
EMBO J. 2011 Jul 29;30(18):3701-13. doi: 10.1038/emboj.2011.254.
9
Light-induced translocation of Drosophila visual Arrestin2 depends on Rac2.
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4740-5. doi: 10.1073/pnas.0906386107. Epub 2010 Feb 22.
10
DAG lipase activity is necessary for TRP channel regulation in Drosophila photoreceptors.
Neuron. 2008 Jun 26;58(6):884-96. doi: 10.1016/j.neuron.2008.05.001.

本文引用的文献

1
Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster.
J Physiol. 1976 Apr;256(2):415-39. doi: 10.1113/jphysiol.1976.sp011331.
2
Drosophila locus with gene-dosage effects on rhodopsin.
Proc Natl Acad Sci U S A. 1983 Jul;80(14):4441-5. doi: 10.1073/pnas.80.14.4441.
3
PROBABILITY OF OCCURRENCE OF DISCRETE POTENTIAL WAVES IN THE EYE OF LIMULUS.
J Gen Physiol. 1964 Jan;47(3):443-63. doi: 10.1085/jgp.47.3.443.
4
Membrane potential transients and membrane time constant of motoneurons.
Exp Neurol. 1960 Oct;2:503-32. doi: 10.1016/0014-4886(60)90029-7.
5
Adapting-bump model for eccentric cells of Limulus.
J Gen Physiol. 1980 Nov;76(5):539-57. doi: 10.1085/jgp.76.5.539.
6
Adapting bump model for ventral photoreceptors of Limulus.
J Gen Physiol. 1982 Jun;79(6):1089-113. doi: 10.1085/jgp.79.6.1089.
8
Photoreceptor function.
Basic Life Sci. 1980;16:331-46. doi: 10.1007/978-1-4684-7968-3_24.
10
Drosophila mutants with reduced rhodopsin content.
Symp Soc Exp Biol. 1983;36:477-501.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验