Suppr超能文献

基于尺度递归网络和合成数据的儿科 X 射线图像中自动导管和管检测。

Automatic Catheter and Tube Detection in Pediatric X-ray Images Using a Scale-Recurrent Network and Synthetic Data.

机构信息

College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.

出版信息

J Digit Imaging. 2020 Feb;33(1):181-190. doi: 10.1007/s10278-019-00201-7.

Abstract

Catheters are commonly inserted life supporting devices. Because serious complications can arise from malpositioned catheters, X-ray images are used to assess the position of a catheter immediately after placement. Previous computer vision approaches to detect catheters on X-ray images were either rule-based or only capable of processing a limited number or type of catheters projecting over the chest. With the resurgence of deep learning, supervised training approaches are beginning to show promising results. However, dense annotation maps are required, and the work of a human annotator is difficult to scale. In this work, we propose an automatic approach for detection of catheters and tubes on pediatric X-ray images. We propose a simple way of synthesizing catheters on X-ray images to generate a training dataset by exploiting the fact that catheters are essentially tubular structures with various cross sectional profiles. Further, we develop a UNet-style segmentation network with a recurrent module that can process inputs at multiple scales and iteratively refine the detection result. By training on adult chest X-rays, the proposed network exhibits promising detection results on pediatric chest/abdomen X-rays in terms of both precision and recall, with F = 0.8. The approach described in this work may contribute to the development of clinical systems to detect and assess the placement of catheters on X-ray images. This may provide a solution to triage and prioritize X-ray images with potentially malpositioned catheters for a radiologist's urgent review and help automate radiology reporting.

摘要

导管是常用的生命支持设备。由于导管位置不当可能会引起严重并发症,因此 X 射线图像通常用于评估导管放置后的位置。以前的计算机视觉方法要么基于规则,要么只能处理有限数量或类型的导管,这些导管投影在胸部上方。随着深度学习的复兴,监督训练方法开始显示出有希望的结果。然而,需要密集的注释图,并且人工注释者的工作难以扩展。在这项工作中,我们提出了一种自动检测儿科 X 射线图像中导管和管子的方法。我们提出了一种在 X 射线图像上合成导管的简单方法,通过利用导管本质上是具有各种横截面轮廓的管状结构这一事实来生成训练数据集。此外,我们开发了一种具有递归模块的 UNet 风格的分割网络,该网络可以在多个尺度上处理输入,并迭代地细化检测结果。通过在成人胸部 X 射线上进行训练,所提出的网络在儿科胸部/腹部 X 射线上的检测结果在精度和召回率方面都表现出了有希望的结果,F 值为 0.8。这项工作中描述的方法可能有助于开发用于检测和评估 X 射线图像中导管位置的临床系统。这可以为放射科医生的紧急审查提供一种解决方案,以便对可能位置不当的导管进行分类和优先处理,并帮助自动化放射学报告。

相似文献

7
Cryo-balloon catheter localization in X-Ray fluoroscopy using U-net.基于 U-net 的 X 射线透视下冷冻球囊导管定位。
Int J Comput Assist Radiol Surg. 2021 Aug;16(8):1255-1262. doi: 10.1007/s11548-021-02366-5. Epub 2021 Apr 20.
9
Caries segmentation on tooth X-ray images with a deep network.基于深度网络的牙齿X光图像龋病分割
J Dent. 2022 Apr;119:104076. doi: 10.1016/j.jdent.2022.104076. Epub 2022 Feb 23.

引用本文的文献

7
An Artificial Neural Network for Nasogastric Tube Position Decision Support.一种用于鼻胃管位置决策支持的人工神经网络。
Radiol Artif Intell. 2023 Feb 1;5(2):e220165. doi: 10.1148/ryai.220165. eCollection 2023 Mar.

本文引用的文献

5
Fully Convolutional Networks for Semantic Segmentation.全卷积网络用于语义分割。
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
6
Segmenting Retinal Blood Vessels With Deep Neural Networks.基于深度神经网络的视网膜血管分割。
IEEE Trans Med Imaging. 2016 Nov;35(11):2369-2380. doi: 10.1109/TMI.2016.2546227. Epub 2016 Mar 24.
10
Automated detection of endotracheal tubes in paediatric chest radiographs.小儿胸部X光片中气管插管的自动检测
Comput Methods Programs Biomed. 2015 Jan;118(1):1-10. doi: 10.1016/j.cmpb.2014.10.009. Epub 2014 Nov 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验