Suppr超能文献

基于条件生成对抗网络的锐度感知低剂量 CT 去噪

Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network.

机构信息

University of Saskatchewan, College of Medicine, Saskatoon, SK, Canada.

出版信息

J Digit Imaging. 2018 Oct;31(5):655-669. doi: 10.1007/s10278-018-0056-0.

Abstract

Low-dose computed tomography (LDCT) has offered tremendous benefits in radiation-restricted applications, but the quantum noise as resulted by the insufficient number of photons could potentially harm the diagnostic performance. Current image-based denoising methods tend to produce a blur effect on the final reconstructed results especially in high noise levels. In this paper, a deep learning-based approach was proposed to mitigate this problem. An adversarially trained network and a sharpness detection network were trained to guide the training process. Experiments on both simulated and real dataset show that the results of the proposed method have very small resolution loss and achieves better performance relative to state-of-the-art methods both quantitatively and visually.

摘要

低剂量计算机断层扫描(LDCT)在限制辐射的应用中提供了巨大的益处,但由于光子数量不足而导致的量子噪声可能会损害诊断性能。目前基于图像的去噪方法往往会在最终的重建结果中产生模糊效果,尤其是在高噪声水平下。在本文中,提出了一种基于深度学习的方法来解决这个问题。训练了一个对抗训练网络和一个锐度检测网络来指导训练过程。在模拟和真实数据集上的实验表明,该方法的结果分辨率损失非常小,在定量和定性方面都比最先进的方法具有更好的性能。

相似文献

引用本文的文献

5
Self-supervised learning for CT image denoising and reconstruction: a review.用于CT图像去噪和重建的自监督学习:综述
Biomed Eng Lett. 2024 Sep 12;14(6):1207-1220. doi: 10.1007/s13534-024-00424-w. eCollection 2024 Nov.

本文引用的文献

1
On the Effectiveness of Least Squares Generative Adversarial Networks.最小二乘生成对抗网络的有效性。
IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):2947-2960. doi: 10.1109/TPAMI.2018.2872043. Epub 2018 Sep 24.
4
Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network.采用残差编解码器卷积神经网络的低剂量CT
IEEE Trans Med Imaging. 2017 Dec;36(12):2524-2535. doi: 10.1109/TMI.2017.2715284. Epub 2017 Jun 13.
5
Generative Adversarial Networks for Noise Reduction in Low-Dose CT.生成对抗网络在低剂量 CT 中的噪声降低。
IEEE Trans Med Imaging. 2017 Dec;36(12):2536-2545. doi: 10.1109/TMI.2017.2708987. Epub 2017 May 26.
6
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
7
LBP-Based Segmentation of Defocus Blur.基于 LBP 的离焦模糊分割。
IEEE Trans Image Process. 2016 Apr;25(4):1626-38. doi: 10.1109/TIP.2016.2528042. Epub 2016 Feb 11.
9
Low dose CT image restoration using a database of image patches.使用图像块数据库进行低剂量CT图像重建
Phys Med Biol. 2015 Jan 21;60(2):869-82. doi: 10.1088/0031-9155/60/2/869. Epub 2015 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验