Suppr超能文献

碎片化的歧义物体:用于物体识别任务的具有稳定低水平特征的刺激物。

Fragmented ambiguous objects: Stimuli with stable low-level features for object recognition tasks.

机构信息

Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America.

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

PLoS One. 2019 Apr 11;14(4):e0215306. doi: 10.1371/journal.pone.0215306. eCollection 2019.

Abstract

Visual object recognition is a complex skill that relies on the interaction of many spatially distinct and specialized visual areas in the human brain. One tool that can help us better understand these specializations and interactions is a set of visual stimuli that do not differ along low-level dimensions (e.g., orientation, contrast) but do differ along high-level dimensions, such as whether a real-world object can be detected. The present work creates a set of line segment-based images that are matched for luminance, contrast, and orientation distribution (both for single elements and for pair-wise combinations) but result in a range of object and non-object percepts. Image generation started with images of isolated objects taken from publicly available databases and then progressed through 3-stages: a computer algorithm generating 718 candidate images, expert observers selecting 217 for further consideration, and naïve observers performing final ratings. This process identified a set of 100 images that all have the same low-level properties but cover a range of recognizability (proportion of naïve observers (N = 120) who indicated that the stimulus "contained a known object") and semantic stability (consistency across the categories of living, non-living/manipulable, and non-living/non-manipulable when the same observers named "known" objects). Stimuli are available at https://github.com/caolman/FAOT.git.

摘要

视觉物体识别是一项复杂的技能,依赖于人类大脑中许多空间上不同且专门的视觉区域的相互作用。一种可以帮助我们更好地理解这些专业化和相互作用的工具是一组视觉刺激物,这些刺激物在低水平维度(例如,方向、对比度)上没有差异,但在高水平维度上存在差异,例如是否可以检测到现实世界中的物体。本工作创建了一组基于线段的图像,这些图像在亮度、对比度和方向分布方面匹配(无论是单个元素还是成对组合),但会产生一系列物体和非物体感知。图像生成从来自公共可用数据库的孤立物体图像开始,然后经过 3 个阶段:计算机算法生成 718 个候选图像,专家观察者选择 217 个进行进一步考虑,以及天真观察者进行最终评分。这个过程确定了一组 100 张图像,这些图像都具有相同的低水平属性,但涵盖了可识别性的范围(天真观察者的比例(N=120)表示刺激“包含已知物体”)和语义稳定性(当相同的观察者命名“已知”物体时,在生物、非生物/可操作和非生物/不可操作的类别中保持一致)。刺激物可在 https://github.com/caolman/FAOT.git 上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08d7/6459591/400ca18fa2f0/pone.0215306.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验