Suppr超能文献

基于构成数据预测 2030 年中国、印度和越南的人口年龄结构。

Predicting population age structures of China, India, and Vietnam by 2030 based on compositional data.

机构信息

School of Economics and Management, Beihang University, Beijing, China.

Business School, Shandong University, Weihai, Shandong, China.

出版信息

PLoS One. 2019 Apr 11;14(4):e0212772. doi: 10.1371/journal.pone.0212772. eCollection 2019.

Abstract

The changing population age structure has a significant influence on the economy, society, and numerous other aspects of a country. This paper has innovatively applied the method of compositional data forecasting for the prediction of population age changes of the young (aged 0-14), the middle-aged (aged 15-64), and the elderly (aged older than 65) in China, India, and Vietnam by 2030 based on data from 1960 to 2016. To select the best-suited forecasting model, an array of data transformation approaches and forecasting models have been extensively employed, and a large number of comparisons have been made between the aforementioned methods. The best-suited model for each country is identified considering the root mean squared error and mean absolute percent error values from the compositional data. As noted in this study, first and foremost, it is predicted that by the year 2030, China will witness the disappearance of population dividend and get mired in an aging problem far more severe than that of India or Vietnam. Second, Vietnam's trend of change in population age structure resembles that of China, but the country will sustain its good health as a whole. Finally, the working population of India demonstrates a strong rising trend, indicating that the age structure of the Indian population still remains relatively "young". Meanwhile, the continuous rise in the proportion of elderly population and the gradual leveling off growth of the young population have nevertheless become serious problems in the world. The present paper attempts to offer crucial insights into the Asian population size, labor market and urbanization, and, moreover, provides suggestions for a sustainable global demographic development.

摘要

人口年龄结构的变化对一个国家的经济、社会和许多其他方面都有重大影响。本文创新性地应用成分数据预测方法,对中国、印度和越南的年轻人口(0-14 岁)、中年人口(15-64 岁)和老年人口(65 岁以上)的人口年龄变化进行了预测,预测数据基于 1960 年至 2016 年的数据。为了选择最合适的预测模型,我们广泛采用了一系列数据转换方法和预测模型,并对上述方法进行了大量比较。考虑到成分数据的均方根误差和平均绝对百分比误差值,确定了每个国家最合适的模型。本研究首先预测,到 2030 年,中国将消失人口红利,面临比印度或越南更为严重的老龄化问题。其次,越南的人口年龄结构变化趋势与中国相似,但该国整体健康状况良好。最后,印度的劳动人口呈强劲上升趋势,表明印度人口的年龄结构仍然相对“年轻”。然而,老年人口比例的持续上升和年轻人口的增长逐渐趋平,已成为全球严重的问题。本文试图为亚洲人口规模、劳动力市场和城市化提供重要见解,为可持续的全球人口发展提供建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da56/6459537/a9d242f567ef/pone.0212772.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验