Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil.
CONACYT - Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD) - CIDAM, Km. 8 Antigua Carretera a Pátzcuaro s/n, 58341 Morelia, Michoacán, México.
Biotechnol Adv. 2019 Sep-Oct;37(5):746-770. doi: 10.1016/j.biotechadv.2019.04.003. Epub 2019 Apr 8.
Lipases are the most widely used enzymes in biocatalysis, and the most utilized method for enzyme immobilization is using hydrophobic supports at low ionic strength. This method allows the one step immobilization, purification, stabilization, and hyperactivation of lipases, and that is the main cause of their popularity. This review focuses on these lipase immobilization supports. First, the advantages of these supports for lipase immobilization will be presented and the likeliest immobilization mechanism (interfacial activation on the support surface) will be revised. Then, its main shortcoming will be discussed: enzyme desorption under certain conditions (such as high temperature, presence of cosolvents or detergent molecules). Methods to overcome this problem include physical or chemical crosslinking of the immobilized enzyme molecules or using heterofunctional supports. Thus, supports containing hydrophobic acyl chain plus epoxy, glutaraldehyde, ionic, vinylsulfone or glyoxyl groups have been designed. This prevents enzyme desorption and improved enzyme stability, but it may have some limitations, that will be discussed and some additional solutions will be proposed (e.g., chemical amination of the enzyme to have a full covalent enzyme-support reaction). These immobilized lipases may be subject to unfolding and refolding strategies to reactivate inactivated enzymes. Finally, these biocatalysts have been used in new strategies for enzyme coimmobilization, where the most stable enzyme could be reutilized after desorption of the least stable one after its inactivation.
脂肪酶是生物催化中应用最广泛的酶,而酶固定化最常用的方法是在低离子强度下使用疏水载体。这种方法允许一步固定化、纯化、稳定和超激活脂肪酶,这也是它们如此受欢迎的主要原因。本文重点介绍这些脂肪酶固定化载体。首先,将介绍这些载体用于脂肪酶固定化的优点,并修正最可能的固定化机制(载体表面的界面活化)。然后,将讨论其主要缺点:在某些条件下(如高温、存在共溶剂或去污剂分子)酶解吸。克服这个问题的方法包括固定化酶分子的物理或化学交联或使用杂官能载体。因此,设计了含有疏水酰基链加环氧、戊二醛、离子、乙烯砜或乙二醛基团的载体。这可以防止酶解吸并提高酶的稳定性,但它可能存在一些限制,将在文中进行讨论,并提出一些额外的解决方案(例如,通过酶的化学氨基化反应以实现完全共价的酶-载体反应)。这些固定化脂肪酶可能需要进行展开和重折叠策略以重新激活失活的酶。最后,这些生物催化剂已用于酶共固定化的新策略中,在失活后解吸最不稳定的酶后,可以重新利用最稳定的酶。