Suppr超能文献

癌细胞中的遗传交互网络。

Genetic interaction networks in cancer cells.

机构信息

Donnelly Centre, University of Toronto, ON, Canada.

Donnelly Centre, University of Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, ON, Canada.

出版信息

Curr Opin Genet Dev. 2019 Feb;54:64-72. doi: 10.1016/j.gde.2019.03.002. Epub 2019 Apr 8.

Abstract

The genotype-to-phenotype relationship in health and disease is complex and influenced by both an individual's environment and their unique genome. Personal genetic variants can modulate gene function to generate a phenotype either through a single gene effect or through genetic interactions involving two or more genes. The relevance of genetic interactions to disease phenotypes has been particularly clear in cancer research, where an extreme genetic interaction, synthetic lethality, has been exploited as a therapeutic strategy. The obvious benefits of unmasking genetic background-specific vulnerabilities, coupled with the power of systematic genome editing, have fueled efforts to translate genetic interaction mapping from model organisms to human cells. Here, we review recent developments in genetic interaction mapping, with a focus on CRISPR-based genome editing technologies and cancer.

摘要

基因型与表型在健康和疾病中的关系是复杂的,受到个体环境和独特基因组的影响。个体遗传变异可以通过单个基因效应或涉及两个或多个基因的遗传相互作用来调节基因功能,从而产生表型。遗传相互作用与疾病表型的相关性在癌症研究中尤为明显,其中一种极端的遗传相互作用,即合成致死性,已被用作一种治疗策略。揭示遗传背景特异性脆弱性的明显好处,加上系统基因组编辑的强大功能,促使人们努力将遗传相互作用图谱从模式生物转化为人类细胞。在这里,我们回顾了遗传相互作用图谱的最新进展,重点介绍了基于 CRISPR 的基因组编辑技术和癌症。

相似文献

1
Genetic interaction networks in cancer cells.
Curr Opin Genet Dev. 2019 Feb;54:64-72. doi: 10.1016/j.gde.2019.03.002. Epub 2019 Apr 8.
2
Toward an integrated map of genetic interactions in cancer cells.
Mol Syst Biol. 2018 Feb 21;14(2):e7656. doi: 10.15252/msb.20177656.
3
Genotype networks of 80 quantitative Arabidopsis thaliana phenotypes reveal phenotypic evolvability despite pervasive epistasis.
PLoS Comput Biol. 2020 Aug 13;16(8):e1008082. doi: 10.1371/journal.pcbi.1008082. eCollection 2020 Aug.
4
Large scale control and programming of gene expression using CRISPR.
Semin Cell Dev Biol. 2019 Dec;96:124-132. doi: 10.1016/j.semcdb.2019.05.013. Epub 2019 Jun 12.
5
Context-dependent genetic interactions in cancer.
Curr Opin Genet Dev. 2019 Feb;54:73-82. doi: 10.1016/j.gde.2019.03.004. Epub 2019 Apr 23.
6
Dissecting Tissue-Specific Super-Enhancers by Integrating Genome-Wide Analyses and CRISPR/Cas9 Genome Editing.
J Mammary Gland Biol Neoplasia. 2019 Mar;24(1):47-59. doi: 10.1007/s10911-018-9417-z. Epub 2018 Oct 6.
7
The use of CRISPR/Cas9-based gene editing strategies to explore cancer gene function in mice.
Curr Opin Genet Dev. 2021 Feb;66:57-62. doi: 10.1016/j.gde.2020.12.005. Epub 2021 Jan 8.
8
Protocol for Construction of Genome-Wide Epistatic SNP Networks Using WISH-R Package.
Methods Mol Biol. 2021;2212:155-168. doi: 10.1007/978-1-0716-0947-7_10.
9
CRISPR/Cas9 for cancer research and therapy.
Semin Cancer Biol. 2019 Apr;55:106-119. doi: 10.1016/j.semcancer.2018.04.001. Epub 2018 Apr 16.
10
A new era in functional genomics screens.
Nat Rev Genet. 2022 Feb;23(2):89-103. doi: 10.1038/s41576-021-00409-w. Epub 2021 Sep 20.

引用本文的文献

1
Evaluation of Cas13d as a tool for genetic interaction mapping.
Nat Commun. 2025 Feb 14;16(1):1631. doi: 10.1038/s41467-025-56747-4.
2
Graphlet-based hyperbolic embeddings capture evolutionary dynamics in genetic networks.
Bioinformatics. 2024 Nov 1;40(11). doi: 10.1093/bioinformatics/btae650.
3
Nuclear proteasomes buffer cytoplasmic proteins during autophagy compromise.
Nat Cell Biol. 2024 Oct;26(10):1691-1699. doi: 10.1038/s41556-024-01488-7. Epub 2024 Aug 29.
4
From Data to Cure: A Comprehensive Exploration of Multi-omics Data Analysis for Targeted Therapies.
Mol Biotechnol. 2025 Apr;67(4):1269-1289. doi: 10.1007/s12033-024-01133-6. Epub 2024 Apr 2.
6
Keep in touch: a perspective on the mitochondrial social network and its implication in health and disease.
Cell Death Discov. 2023 Nov 16;9(1):417. doi: 10.1038/s41420-023-01710-9.
7
High Lethality of Infection in Mice Lacking the Phagocyte Oxidase and Caspase1/11.
Infect Immun. 2023 Jul 18;91(7):e0006023. doi: 10.1128/iai.00060-23. Epub 2023 Jun 14.
8
High-Throughput Identification, Modeling, and Analysis of Cancer Driver Genes In Vivo.
Cold Spring Harb Perspect Med. 2023 Jul 5;13(7):a041382. doi: 10.1101/cshperspect.a041382.
9
Rapid lethality of mice lacking the phagocyte oxidase and Caspase1/11 following infection.
bioRxiv. 2023 Feb 11:2023.02.08.527787. doi: 10.1101/2023.02.08.527787.
10
A New View of Activating Mutations in Cancer.
Cancer Res. 2022 Nov 15;82(22):4114-4123. doi: 10.1158/0008-5472.CAN-22-2125.

本文引用的文献

1
Optical Pooled Screens in Human Cells.
Cell. 2019 Oct 17;179(3):787-799.e17. doi: 10.1016/j.cell.2019.09.016.
3
High-resolution mapping of cancer cell networks using co-functional interactions.
Mol Syst Biol. 2018 Dec 20;14(12):e8594. doi: 10.15252/msb.20188594.
4
A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation.
Nat Cell Biol. 2018 Dec;20(12):1410-1420. doi: 10.1038/s41556-018-0221-1. Epub 2018 Nov 5.
6
Human tumor genomics and zebrafish modeling identify loss as a driver of mucosal melanoma.
Science. 2018 Nov 30;362(6418):1055-1060. doi: 10.1126/science.aau6509. Epub 2018 Nov 1.
7
Cells Lacking the Tumor Suppressor Gene Are Hyperdependent on Aurora B Kinase for Survival.
Cancer Discov. 2019 Feb;9(2):230-247. doi: 10.1158/2159-8290.CD-18-0389. Epub 2018 Oct 29.
8
Aurora A Kinase Inhibition Is Synthetic Lethal with Loss of the Tumor Suppressor Gene.
Cancer Discov. 2019 Feb;9(2):248-263. doi: 10.1158/2159-8290.CD-18-0469. Epub 2018 Oct 29.
9
Protein Barcodes Enable High-Dimensional Single-Cell CRISPR Screens.
Cell. 2018 Nov 1;175(4):1141-1155.e16. doi: 10.1016/j.cell.2018.09.022. Epub 2018 Oct 18.
10
Synthetic Lethality and Cancer - Penetrance as the Major Barrier.
Trends Cancer. 2018 Oct;4(10):671-683. doi: 10.1016/j.trecan.2018.08.003. Epub 2018 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验