Suppr超能文献

一种用于闭环深部脑刺激的可编程多生物标志物神经传感器。

A Programmable Multi-biomarker Neural Sensor for Closed-loop DBS.

作者信息

Parastarfeizabadi Mahboubeh, Kouzani Abbas Z, Beckinghausen Jaclyn, Lin Tao, Sillitoe Roy V

机构信息

School of Engineering, Deakin University, Geelong, VIC 3216, Australia.

Department of Pathology and Immunology, Department of Neuroscience, and Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston Texas 77030, USA.

出版信息

IEEE Access. 2018;7:230-244. doi: 10.1109/ACCESS.2018.2885336. Epub 2018 Dec 7.

Abstract

Most of the current closed-loop DBS devices use a single biomarker in their feedback loop which may limit their performance and applications. This paper presents design, fabrication, and validation of a programmable multi-biomarker neural sensor which can be integrated into closed-loop DBS devices. The device is capable of sensing a combination of low-frequency (7-45 Hz), and high-frequency (200-1000 Hz) neural signals. The signals can be amplified with a digitally programmable gain within the range 50-100 dB. The neural signals can be stored into a local memory for processing and validation. The sensing and storage functions are implemented via a combination of analog and digital circuits involving preamplifiers, filters, programmable post-amplifiers, microcontroller, digital potentiometer, and flash memory. The device is fabricated, and its performance is validated through: (i) bench tests using sinusoidal and pre-recorded neural signals, (ii) in-vitro tests using pre-recorded neural signals in saline solution, and (iii) in-vivo tests by recording neural signals from freely-moving laboratory mice. The animals were implanted with a PlasticsOne electrode, and recording was conducted after recovery from the electrode implantation surgery. The experimental results are presented and discussed confirming the successful operation of the device. The size and weight of the device enable tetherless back-mountable use in pre-clinical trials.

摘要

当前大多数闭环深部脑刺激(DBS)设备在其反馈回路中使用单一生物标志物,这可能会限制其性能和应用。本文介绍了一种可编程多生物标志物神经传感器的设计、制造和验证,该传感器可集成到闭环DBS设备中。该设备能够感应低频(7 - 45赫兹)和高频(200 - 1000赫兹)神经信号的组合。这些信号可以通过50 - 100分贝范围内的数字可编程增益进行放大。神经信号可以存储到本地存储器中进行处理和验证。传感和存储功能通过模拟和数字电路的组合来实现,这些电路包括前置放大器、滤波器、可编程后置放大器、微控制器、数字电位器和闪存。该设备已制造完成,并通过以下方式验证其性能:(i)使用正弦波和预先录制的神经信号进行台架测试,(ii)在盐溶液中使用预先录制的神经信号进行体外测试,以及(iii)通过记录自由活动的实验小鼠的神经信号进行体内测试。给动物植入了PlasticsOne电极,并在电极植入手术恢复后进行记录。展示并讨论了实验结果,证实了该设备的成功运行。该设备的尺寸和重量使其能够在临床前试验中进行无系绳的背部安装使用。

相似文献

1
A Programmable Multi-biomarker Neural Sensor for Closed-loop DBS.
IEEE Access. 2018;7:230-244. doi: 10.1109/ACCESS.2018.2885336. Epub 2018 Dec 7.
2
A Miniature Dual-Biomarker-Based Sensing and Conditioning Device for Closed-Loop DBS.
IEEE J Transl Eng Health Med. 2019 Aug 30;7:2000308. doi: 10.1109/JTEHM.2019.2937776. eCollection 2019.
3
Multi-disease Deep Brain Stimulation.
IEEE Access. 2020;8:216933-216947. doi: 10.1109/access.2020.3041942. Epub 2020 Dec 2.
4
The PennBMBI: Design of a General Purpose Wireless Brain-Machine-Brain Interface System.
IEEE Trans Biomed Circuits Syst. 2015 Apr;9(2):248-58. doi: 10.1109/TBCAS.2015.2392555. Epub 2015 Mar 5.
5
A miniature closed-loop deep brain stimulation device.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1786-1789. doi: 10.1109/EMBC.2016.7591064.
6
Design of a Closed-Loop, Bidirectional Brain Machine Interface System With Energy Efficient Neural Feature Extraction and PID Control.
IEEE Trans Biomed Circuits Syst. 2017 Aug;11(4):729-742. doi: 10.1109/TBCAS.2016.2622738. Epub 2016 Dec 16.
7
A proof-of-principle simulation for closed-loop control based on preexisting experimental thalamic DBS-enhanced instrumental learning.
Brain Stimul. 2017 May-Jun;10(3):672-683. doi: 10.1016/j.brs.2017.02.004. Epub 2017 Feb 24.
8
In-vitro validation of a closed-loop optogenetic stimulation device.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1130-1133. doi: 10.1109/EMBC.2017.8037028.
10
A closed-loop compressive-sensing-based neural recording system.
J Neural Eng. 2015 Jun;12(3):036005. doi: 10.1088/1741-2560/12/3/036005. Epub 2015 Apr 15.

引用本文的文献

1
Multi-disease Deep Brain Stimulation.
IEEE Access. 2020;8:216933-216947. doi: 10.1109/access.2020.3041942. Epub 2020 Dec 2.

本文引用的文献

1
Toward true closed-loop neuromodulation: artifact-free recording during stimulation.
Curr Opin Neurobiol. 2018 Jun;50:119-127. doi: 10.1016/j.conb.2018.01.012. Epub 2018 Feb 20.
2
Advances in closed-loop deep brain stimulation devices.
J Neuroeng Rehabil. 2017 Aug 11;14(1):79. doi: 10.1186/s12984-017-0295-1.
3
Oscillatory Activities in Neurological Disorders of Elderly: Biomarkers to Target for Neuromodulation.
Front Aging Neurosci. 2017 Jun 13;9:189. doi: 10.3389/fnagi.2017.00189. eCollection 2017.
5
A miniature closed-loop deep brain stimulation device.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1786-1789. doi: 10.1109/EMBC.2016.7591064.
7
Closed-Loop Deep Brain Stimulation Effects on Parkinsonian Motor Symptoms in a Non-Human Primate - Is Beta Enough?
Brain Stimul. 2016 Nov-Dec;9(6):892-896. doi: 10.1016/j.brs.2016.06.051. Epub 2016 Jun 22.
8
Low-Frequency Noise and Offset Rejection in DC-Coupled Neural Amplifiers: A Review and Digitally-Assisted Design Tutorial.
IEEE Trans Biomed Circuits Syst. 2017 Feb;11(1):161-176. doi: 10.1109/TBCAS.2016.2539518. Epub 2016 Jun 10.
9
The adaptive deep brain stimulation challenge.
Parkinsonism Relat Disord. 2016 Jul;28:12-7. doi: 10.1016/j.parkreldis.2016.03.020. Epub 2016 Apr 2.
10
An external portable device for adaptive deep brain stimulation (aDBS) clinical research in advanced Parkinson's Disease.
Med Eng Phys. 2016 May;38(5):498-505. doi: 10.1016/j.medengphy.2016.02.007. Epub 2016 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验