Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom.
Plymouth University, Drake Circus, Plymouth, United Kingdom.
PLoS Biol. 2019 Apr 12;17(4):e3000226. doi: 10.1371/journal.pbio.3000226. eCollection 2019 Apr.
Although collar cells are conserved across animals and their closest relatives, the choanoflagellates, little is known about their ancestry, their subcellular architecture, or how they differentiate. The choanoflagellate Salpingoeca rosetta expresses genes necessary for animal development and can alternate between unicellular and multicellular states, making it a powerful model for investigating the origin of animal multicellularity and mechanisms underlying cell differentiation. To compare the subcellular architecture of solitary collar cells in S. rosetta with that of multicellular 'rosette' colonies and collar cells in sponges, we reconstructed entire cells in 3D through transmission electron microscopy on serial ultrathin sections. Structural analysis of our 3D reconstructions revealed important differences between single and colonial choanoflagellate cells, with colonial cells exhibiting a more amoeboid morphology consistent with higher levels of macropinocytotic activity. Comparison of multiple reconstructed rosette colonies highlighted the variable nature of cell sizes, cell-cell contact networks, and colony arrangement. Importantly, we uncovered the presence of elongated cells in some rosette colonies that likely represent a distinct and differentiated cell type, pointing toward spatial cell differentiation. Intercellular bridges within choanoflagellate colonies displayed a variety of morphologies and connected some but not all neighbouring cells. Reconstruction of sponge choanocytes revealed ultrastructural commonalities but also differences in major organelle composition in comparison to choanoflagellates. Together, our comparative reconstructions uncover the architecture of cell differentiation in choanoflagellates and sponge choanocytes and constitute an important step in reconstructing the cell biology of the last common ancestor of animals.
虽然领细胞在动物及其近亲领鞭毛虫中是保守的,但人们对它们的祖先是如何分化的,它们的亚细胞结构,以及它们如何分化知之甚少。领鞭毛虫玫瑰旋口虫表达了动物发育所必需的基因,并且可以在单细胞和多细胞状态之间交替,使其成为研究动物多细胞起源和细胞分化机制的强大模型。为了比较玫瑰旋口虫中单个领细胞的亚细胞结构与海绵中的多细胞“玫瑰”菌落和领细胞的亚细胞结构,我们通过对连续超薄切片进行透射电子显微镜重建了整个细胞的 3D 结构。我们的 3D 重建结构分析揭示了单细胞和群体领鞭毛虫细胞之间的重要差异,群体细胞表现出更具变形虫形态的特征,这与更高水平的巨胞饮活性一致。对多个重建的玫瑰旋口虫菌落的比较突出了细胞大小、细胞-细胞接触网络和菌落排列的可变性。重要的是,我们发现一些玫瑰旋口虫菌落中存在伸长细胞,这些细胞可能代表一种不同的分化细胞类型,表明存在空间细胞分化。领鞭毛虫菌落中的细胞间桥呈现出多种形态,并连接了一些但不是所有相邻的细胞。海绵领细胞的重建揭示了与领鞭毛虫相比,在超微结构上具有共性,但在主要细胞器组成上也存在差异。总之,我们的比较重建揭示了领鞭毛虫和海绵领细胞中细胞分化的结构,并为重建动物最后共同祖先的细胞生物学迈出了重要的一步。