Howard Hughes Medical Institute, University of California, Berkeley, CA 94720.
Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1303-1311. doi: 10.1073/pnas.1909447117. Epub 2020 Jan 2.
Inspired by the patterns of multicellularity in choanoflagellates, the closest living relatives of animals, we quantify the biophysical processes underlying the morphogenesis of rosette colonies in the choanoflagellate We find that rosettes reproducibly transition from an early stage of 2-dimensional (2D) growth to a later stage of 3D growth, despite the underlying variability of the cell lineages. Our perturbative experiments demonstrate the fundamental importance of a basally secreted extracellular matrix (ECM) for rosette morphogenesis and show that the interaction of the ECM with cells in the colony physically constrains the packing of proliferating cells and, thus, controls colony shape. Simulations of a biophysically inspired model that accounts for the size and shape of the individual cells, the fraction of ECM, and its stiffness relative to that of the cells suffices to explain our observations and yields a morphospace consistent with observations across a range of multicellular choanoflagellate colonies. Overall, our biophysical perspective on rosette development complements previous genetic perspectives and, thus, helps illuminate the interplay between cell biology and physics in regulating morphogenesis.
受动物最亲近的近亲领鞭毛虫(choanoflagellates)中多细胞结构模式的启发,我们对领鞭毛虫中玫瑰结群体形态发生的生物物理过程进行了量化。我们发现,尽管细胞谱系存在潜在的可变性,但玫瑰结仍能从早期的二维(2D)生长阶段稳定过渡到后期的三维(3D)生长阶段。我们的微扰实验证明了基底分泌的细胞外基质(extracellular matrix,ECM)对于玫瑰结形态发生的基本重要性,并表明 ECM 与群体中细胞的相互作用从物理上限制了增殖细胞的堆积,从而控制了群体的形状。我们还对一个生物物理启发模型进行了模拟,该模型考虑了单个细胞的大小和形状、ECM 的比例以及其相对于细胞的刚度,这足以解释我们的观察结果,并产生了一个与多种多细胞领鞭毛虫群体的观察结果一致的形态空间。总的来说,我们对玫瑰结发育的生物物理观点补充了之前的遗传观点,从而有助于阐明细胞生物学和物理学在调节形态发生过程中的相互作用。