Suppr超能文献

土壤中耐辐射球菌的群落生态学。

Community Ecology of Deinococcus in Irradiated Soil.

机构信息

School of Biological Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

Department of Plant Biology and Biotechnology, University of Benin, PMB 1154, Ugbowo, Benin City, Edo State, Nigeria.

出版信息

Microb Ecol. 2019 Nov;78(4):855-872. doi: 10.1007/s00248-019-01343-5. Epub 2019 Apr 12.

Abstract

Deinococcus is a genus of soil bacteria known for radiation resistance. However, the effects of radiation exposure on its community structure are unknown. We exposed soil to three levels of gamma radiation, 0.1 kGy/h (low), 1 kGy/h (medium), and 3 kGy/h (high), once a week for 6 weeks and then extracted soil DNA for 16S rRNA amplicon sequencing. We found the following: (1) Increasing radiation dose produced a major increase in relative abundance of Deinococcus, reaching ~ 80% of reads at the highest doses. Differing abundances of the various Deinococcus species in relation to exposure levels indicate distinct "radiation niches." At 3 kGy/h, a single OTU identified as D. ficus overwhelmingly dominated the mesocosms. (2) Corresponding published genome data show that the dominant species at 3 kGy/h, D. ficus, has a larger and more complex genome than other Deinococcus species with a greater proportion of genes related to DNA and nucleotide metabolism, cell wall, membrane, and envelope biogenesis as well as more cell cycle control, cell division, and chromosome partitioning-related genes. Deinococcus ficus also has a higher guanine-cytosine ratio than most other Deinococcus. These features may be linked to genome stability and may explain its greater abundance in this apparently competitive system, under high-radiation exposures. (3) Genomic analysis suggests that Deinococcus, including D. ficus, are capable of utilizing diverse carbon sources derived from both microbial cells killed by the radiation (including C5-C12-containing compounds, like arabinose, lactose, N-acetyl-D-glucosamine) and plant-derived organic matter in the soil (e.g., cellulose and hemicellulose). (4) Overall, based on its metagenome, even the most highly irradiated (3 kGy/h) soil possesses a wide range of the activities necessary for a functional soil system. Future studies may consider the resilience and sustainability of such soils in a high-radiation environment.

摘要

耐辐射球菌是一种土壤细菌属,以辐射抗性而闻名。然而,辐射暴露对其群落结构的影响尚不清楚。我们将土壤暴露于三种不同水平的伽马辐射下,分别为 0.1 戈瑞/小时(低)、1 戈瑞/小时(中)和 3 戈瑞/小时(高),每周一次,共 6 周,然后提取土壤 DNA 进行 16S rRNA 扩增子测序。我们发现:(1)辐射剂量的增加导致耐辐射球菌的相对丰度显著增加,在最高剂量下达到约 80%的读数。不同的耐辐射球菌物种与暴露水平的关系表明存在不同的“辐射小生境”。在 3 戈瑞/小时时,一种被鉴定为 D. ficus 的单一大类群在宏基因组中占主导地位。(2)相应的已发表基因组数据表明,在 3 戈瑞/小时时占主导地位的物种 D. ficus 比其他耐辐射球菌具有更大和更复杂的基因组,具有更多与 DNA 和核苷酸代谢、细胞壁、膜和包膜生物发生以及更多细胞周期控制、细胞分裂和染色体分区相关的基因。D. ficus 也具有比大多数其他耐辐射球菌更高的鸟嘌呤-胞嘧啶比率。这些特征可能与基因组稳定性有关,并可能解释其在这种明显具有竞争性的系统中,在高辐射暴露下更为丰富的原因。(3)基因组分析表明,耐辐射球菌包括 D. ficus,能够利用源自辐射杀死的微生物细胞(包括含有 C5-C12 的化合物,如阿拉伯糖、乳糖、N-乙酰-D-葡萄糖胺)和土壤中植物来源的有机物质(如纤维素和半纤维素)的多种碳源。(4)总的来说,根据其宏基因组,即使是受到最高辐射(3 戈瑞/小时)的土壤也拥有广泛的功能土壤系统所需的各种活性。未来的研究可能会考虑在高辐射环境中此类土壤的恢复力和可持续性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验