Suppr超能文献

关注在一项实验中同时纳入雌性和雄性动物的析因设计的优势。

Benefits of a factorial design focusing on inclusion of female and male animals in one experiment.

机构信息

Institute of Laboratory Animal Science, University of Zurich, Wagistrasse 12, 8952 Schlieren, Zurich, Switzerland.

Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Bachemer Str. 86, 50931, Cologne, Germany.

出版信息

J Mol Med (Berl). 2019 Jun;97(6):871-877. doi: 10.1007/s00109-019-01774-0. Epub 2019 Apr 13.

Abstract

Disease occurrence, clinical manifestations, and outcomes differ between men and women. Yet, women and men are most of the time treated similarly, which is often based on experimental data over-representing one sex. Accounting for persisting sex bias in biomedical research is the misconception that the analysis of sex-specific effects would double sample size and costs. We designed an analysis to test the potential benefits of a factorial study design in the context of a study including male and female animals. We chose a 2 × 2 factorial design approach to study the effect of treatment, sex, and an interaction term of treatment and sex in a hypothetical situation. We calculated the sample sizes required to detect an effect of a given magnitude with sufficient power and under different experimental setups. We demonstrated that the inclusion of both sexes in experimental setups, without testing for sex effects, requires no or few additional animals in our scenarios. These experimental designs still allow for the exploration of sex effects at low cost. In a confirmatory instead of an exploratory design, we observed an increase in total sample sizes by 33%, at most. Since the complexities associated with this mathematical model require statistical expertise, we generated and provide a sample size calculator for planning factorial design experiments. For the inclusion of sex, a factorial design is advisable, and a sex-specific analysis can be performed without excessive additional effort. Our easy-to-use calculation tool provides help in designing studies with both sexes and addresses the current sex bias in preclinical studies. KEY MESSAGES: • Both sexes should be included into animal studies. • Exploratory study of sex effects can be conducted with no or small increase in animal number. • Confirmatory analysis of sex effects requires maximum 33% more animals per study. • Our calculation tool supports the design of studies with both sexes.

摘要

疾病的发生、临床表现和转归在男性和女性之间存在差异。然而,男性和女性通常接受类似的治疗,而这种治疗通常基于男性比例过高的实验数据。在生物医学研究中,存在一种误解,即认为分析性别特异性效应会使样本量和成本增加一倍。我们设计了一种分析方法,以检验在包括雄性和雌性动物的研究中,采用析因设计的潜在益处。我们选择了 2×2 析因设计方法,以研究治疗、性别以及治疗和性别的相互作用对假设情况的影响。我们计算了在不同实验设置下,以足够的功效检测给定大小效应所需的样本量。我们证明,在实验设置中纳入两性,而不测试性别效应,在我们的方案中不需要或只需要很少增加动物数量。这些实验设计仍然可以以低成本探索性别效应。在确认性而不是探索性设计中,我们观察到总样本量最多增加了 33%。由于与该数学模型相关的复杂性需要统计学专业知识,因此我们生成并提供了一个用于规划析因设计实验的样本量计算器。对于纳入性别因素,建议采用析因设计,并且可以在不增加过多额外工作量的情况下进行性别特异性分析。我们易于使用的计算工具可帮助设计具有两性的研究,并解决临床前研究中当前存在的性别偏见问题。

关键信息

  1. 应将两性纳入动物研究中。

  2. 可以在不增加动物数量或少量增加动物数量的情况下进行性别效应的探索性研究。

  3. 对性别效应进行确认性分析需要每个研究最多增加 33%的动物。

  4. 我们的计算工具支持具有两性的研究设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验