Karp Natasha A, Berdoy Manuel, Gray Kelly, Hunt Lilian, Jennings Maggy, Kerton Angela, Leach Matt, Tremoleda Jordi L, Gledhill Jon, Pearl Esther J, Percie du Sert Nathalie, Phillips Benjamin, Reynolds Penny S, Ryder Kathy, Stanford S Clare, Wells Sara, Whitfield Lucy
Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
BMS, University of Oxford, Oxford, UK.
Nat Commun. 2025 Apr 22;16(1):3763. doi: 10.1038/s41467-025-58560-5.
An interactive Sex Inclusive Research Framework (SIRF) supports the evaluation of in vivo and ex vivo research proposals to address the risk of sex bias in preclinical research. The framework delivers a traffic light classification, indicating whether a proposal is appropriate, risky, or insufficient with regard to sex inclusion. This tool is designed for use by researchers, (animal) ethical review boards, and funders to generate a rigorous and reproducible assessment of sex inclusion at the proposal level, thus helping address and resolve the embedded sex bias in preclinical research.
一个交互式的性别包容性研究框架(SIRF)支持对体内和体外研究提案进行评估,以解决临床前研究中的性别偏见风险。该框架提供了一个红绿灯分类,表明提案在性别纳入方面是合适、有风险还是不足。这个工具旨在供研究人员、(动物)伦理审查委员会和资助者使用,以便在提案层面就性别纳入进行严格且可重复的评估,从而有助于解决和消除临床前研究中内在的性别偏见。