Suppr超能文献

基于应力的取向律的梗死左心室的多尺度纤维重塑。

Multiscale fiber remodeling in the infarcted left ventricle using a stress-based reorientation law.

机构信息

Department of Mechanical and Aerospace Engineering, University of Kentucky, Lexington, KY, USA.

Division of Cardiovascular Medicine and Department of Physiology, University of Kentucky, Lexington, KY, USA.

出版信息

Acta Biomater. 2024 Nov;189:337-350. doi: 10.1016/j.actbio.2024.09.049. Epub 2024 Oct 1.

Abstract

The organization of myofibers and extra cellular matrix within the myocardium plays a significant role in defining cardiac function. When pathological events occur, such as myocardial infarction (MI), this organization can become disrupted, leading to degraded pumping performance. The current study proposes a multiscale finite element (FE) framework to determine realistic fiber distributions in the left ventricle (LV). This is achieved by implementing a stress-based fiber reorientation law, which seeks to align the fibers with local traction vectors, such that contractile force and load bearing capabilities are maximized. By utilizing the total stress (passive and active), both myofibers and collagen fibers are reoriented. Simulations are conducted to predict the baseline fiber configuration in a normal LV as well as the adverse fiber reorientation that occurs due to different size MIs. The baseline model successfully captures the transmural variation of helical fiber angles within the LV wall, as well as the transverse fiber angle variation from base to apex. In the models of MI, the patterns of fiber reorientation in the infarct, border zone, and remote regions closely align with previous experimental findings, with a significant increase in fibers oriented in a left-handed helical configuration and increased dispersion in the infarct region. Furthermore, the severity of fiber reorientation and impairment of pumping performance both showed a correlation with the size of the infarct. The proposed multiscale modeling framework allows for the effective prediction of adverse remodeling and offers the potential for assessing the effectiveness of therapeutic interventions in the future. STATEMENT OF SIGNIFICANCE: The organization of muscle and collagen fibers within the heart plays a significant role in defining cardiac function. This organization can become disrupted after a heart attack, leading to degraded pumping performance. In the current study, we implemented a stress-based fiber reorientation law into a computer model of the heart, which seeks to realign the fibers such that contractile force and load bearing capabilities are maximized. The primary goal was to evaluate the effects of different sized heart attacks. We observed substantial fiber remodeling in the heart, which matched experimental observations. The proposed computational framework allows for the effective prediction of adverse remodeling and offers the potential for assessing the effectiveness of therapeutic interventions in the future.

摘要

心肌中肌纤维和细胞外基质的组织排列对于定义心脏功能起着重要作用。当发生病理性事件,如心肌梗死(MI)时,这种组织排列可能会被打乱,导致泵血功能下降。本研究提出了一种多尺度有限元(FE)框架,以确定左心室(LV)中的真实纤维分布。这是通过实施基于应力的纤维重定向定律来实现的,该定律旨在使纤维与局部牵引力矢量对齐,从而使收缩力和承载能力最大化。通过利用总应力(被动和主动),对肌纤维和胶原纤维进行重定向。进行模拟以预测正常 LV 中的基线纤维构型以及由于不同大小的 MI 而发生的不利纤维重定向。基线模型成功地捕获了 LV 壁内螺旋纤维角度的跨壁变化,以及从基底到顶点的横向纤维角度变化。在 MI 模型中,梗死区、交界区和远区的纤维重定向模式与之前的实验结果密切一致,左旋螺旋构型的纤维数量显著增加,梗死区的纤维分布更加分散。此外,纤维重定向的严重程度和泵血功能的损害与梗死的大小均呈相关性。所提出的多尺度建模框架能够有效地预测不良重构,并为未来评估治疗干预的效果提供了潜力。

意义声明

心脏内肌肉和胶原纤维的组织排列对于定义心脏功能起着重要作用。这种组织排列在心脏病发作后可能会被打乱,导致泵血功能下降。在本研究中,我们将基于应力的纤维重定向定律应用于心脏的计算机模型中,旨在使纤维重新排列,从而使收缩力和承载能力最大化。主要目标是评估不同大小的心脏病发作的影响。我们观察到心脏内的纤维发生了大量重构,与实验观察结果相匹配。所提出的计算框架能够有效地预测不良重构,并为未来评估治疗干预的效果提供了潜力。

相似文献

4
Post-infarct evolution of ventricular and myocardial function.心肌梗死后心室和心肌功能的演变。
Biomech Model Mechanobiol. 2023 Dec;22(6):1815-1828. doi: 10.1007/s10237-023-01734-1. Epub 2023 Jul 5.
5
Impact of cardiac patch alignment on restoring post-infarct ventricular function.心脏补片对位对梗死心室功能恢复的影响。
Biomech Model Mechanobiol. 2024 Dec;23(6):1963-1976. doi: 10.1007/s10237-024-01877-9. Epub 2024 Aug 1.
7
A finite element model of myocardial infarction using a composite material approach.一种采用复合材料方法的心肌梗死有限元模型。
Comput Methods Biomech Biomed Engin. 2018 Jan;21(1):33-46. doi: 10.1080/10255842.2017.1416355. Epub 2017 Dec 18.
8
MRI-based finite-element analysis of left ventricular aneurysm.基于磁共振成像的左心室室壁瘤有限元分析
Am J Physiol Heart Circ Physiol. 2005 Aug;289(2):H692-700. doi: 10.1152/ajpheart.01226.2004. Epub 2005 Mar 18.

本文引用的文献

2
Post-infarct evolution of ventricular and myocardial function.心肌梗死后心室和心肌功能的演变。
Biomech Model Mechanobiol. 2023 Dec;22(6):1815-1828. doi: 10.1007/s10237-023-01734-1. Epub 2023 Jul 5.
4
Multiscale simulations of left ventricular growth and remodeling.左心室生长与重塑的多尺度模拟
Biophys Rev. 2021 Aug 25;13(5):729-746. doi: 10.1007/s12551-021-00826-5. eCollection 2021 Oct.
6
Magnetic Resonance-Based Characterization of Myocardial Architecture.基于磁共振的心肌结构特征分析。
Heart Fail Clin. 2021 Jan;17(1):85-101. doi: 10.1016/j.hfc.2020.08.007. Epub 2020 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验