Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
Department of Genetics, Faculty of Agriculture, Damietta University, Damietta, Egypt.
J Ind Microbiol Biotechnol. 2019 Jul;46(7):965-975. doi: 10.1007/s10295-019-02180-8. Epub 2019 Apr 13.
Butanol production from agricultural residues is the most promising alternative for fossil fuels. To reach the economic viability of biobutanol production, both glucose and xylose should be utilized and converted into butanol. Here, we engineered a dual-operon-based synthetic pathway in the genome of E. coli MG1655 to produce n-butanol using CRISPR/Cas9 technology. Further deletion of competing pathway followed by fed-batch cultivation of the engineered strain in a bioreactor with glucose-containing complex medium yielded 5.4 g/L n-butanol along with pyruvate as major co-product, indicating a redox imbalance. To ferment xylose into butanol in redox-balanced manner, we selected SSK42, an ethanologenic E. coli strain engineered and evolved in our laboratory to produce ethanol from xylose, for integrating synthetic butanol cassette in its genome via CRISPR/Cas9 after deleting the gene responsible for endogenous ethanol production. The engineered plasmid- and marker-free strain, ASA02, produced 4.32 g/L butanol in fed-batch fermentation in completely defined AM1-xylose medium.
利用农业废弃物生产丁醇是替代化石燃料最有前景的方法。为了达到生物丁醇生产的经济可行性,应利用葡萄糖和木糖,并将其转化为丁醇。在此,我们通过 CRISPR/Cas9 技术在大肠杆菌 MG1655 的基因组中构建了一个基于双操纵子的合成途径来生产正丁醇。进一步删除竞争途径,然后在含有葡萄糖的复杂培养基的生物反应器中分批培养工程菌株,得到 5.4 g/L 的正丁醇和丙酮酸作为主要副产物,表明存在氧化还原失衡。为了以氧化还原平衡的方式将木糖发酵成丁醇,我们选择了 SSK42,这是一株在我们实验室中经过工程改造和进化的产乙醇大肠杆菌菌株,用于通过 CRISPR/Cas9 将合成丁醇盒整合到其基因组中,同时删除负责内源性乙醇生产的基因。经过基因工程改造的无质粒和无标记的 ASA02 菌株在完全定义的 AM1-木糖培养基中进行分批发酵,可生产 4.32 g/L 的丁醇。