Departamento de Posgrado e Investigación, División de Mecatrónica, Instituto Tecnológico Superior de Zacapoaxtla, Carretera Acuaco-Zacapoaxtla kilómetro 8 Totoltepec, C.P. 73680, Zacapoaxtla, Puebla, México.
División de Ingeniería Industrial, Instituto Tecnológico Superior de Zacapoaxtla, Carretera Acuaco-Zacapoaxtla kilómetro 8 Totoltepec, C.P. 73680, Zacapoaxtla, Puebla, México.
J Mol Model. 2019 Apr 13;25(5):117. doi: 10.1007/s00894-019-4016-5.
Eleven adducts for the interaction between imidacloprid (IMI) and some activated carbon (AC) pieces are proposed in this work. Activated carbon pieces were obtained by using a finite zig-zag graphene structure saturated with hydrogen atoms on the edges giving a pristine model with 70 carbon atoms and 22 hydrogen atoms. The zig-zag graphene structure was oxidized with -O, -COOH, -OH, and -O- groups. In this process, two identical groups were inserted over selected sites of the pristine model. All of these structures yielded ten IMI-AC adducts by using the PBE0-D3/6-31G* method, which predicts stable adducts at 0 K, and six of our models give negative free energies changes at room temperature. Thus, we expect that our IMI-AC models can be present when IMI interacts with an AC model. For one of the IMI-AC adducts, we applied solid-state techniques to avoid border effects, and we found that the imidacloprid is deprotonated giving reactive species, suggesting a new path to degrade this insecticide. Additionally, from this analysis, we proposed an additional IMI-AC adduct, which involves high free energy at room temperature. With this study, we show that our AC models can trap imidacloprid, which is quite convenient to remove this insecticide from our environment. Although it is well recognized that functionalized graphene structures are designed to trap some chemical compounds, to the best of our knowledge, this is the first time where IMI-graphene pieces interactions are studied in detail, and hydrogen bonds are analyzed through some scalar fields defined in quantum chemistry like the electron density and the non-covalent interactions index.
本文提出了 11 种吡虫啉(IMI)与一些活性炭(AC)碎片相互作用的加合物。活性炭碎片是通过使用边缘饱和氢原子的有限锯齿形石墨烯结构获得的,得到一个具有 70 个碳原子和 22 个氢原子的原始模型。锯齿形石墨烯结构被-O、-COOH、-OH 和-O-基团氧化。在这个过程中,两个相同的基团被插入到原始模型的选定位置上。所有这些结构都使用 PBE0-D3/6-31G*方法生成了 10 种 IMI-AC 加合物,该方法预测 0 K 下稳定的加合物,并且我们的 6 个模型在室温下给出负自由能变化。因此,我们预计当 IMI 与 AC 模型相互作用时,我们的 IMI-AC 模型可以存在。对于一个 IMI-AC 加合物,我们应用了固态技术来避免边界效应,我们发现吡虫啉被去质子化生成反应性物质,这表明了一种新的途径来降解这种杀虫剂。此外,从这项分析中,我们提出了一个额外的 IMI-AC 加合物,它涉及到室温下的高自由能。通过这项研究,我们表明我们的 AC 模型可以捕获吡虫啉,这非常方便从我们的环境中去除这种杀虫剂。尽管众所周知,功能化石墨烯结构是为了捕获一些化学化合物而设计的,但据我们所知,这是第一次详细研究 IMI-石墨烯碎片相互作用,并通过量子化学中定义的一些标量场分析氢键,如电子密度和非共价相互作用指数。