Suppr超能文献

基于 ULS 组约束的高低阶稀疏功能连接网络融合用于 MCI 分类。

Fusion of ULS Group Constrained High- and Low-Order Sparse Functional Connectivity Networks for MCI Classification.

机构信息

School of Automation Sciences and Electrical Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing Advanced Innovation Center for Big Date-based Precision Medicine, Beihang University, 37 XueYuan Road, HaiDian District, Beijing, China.

Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen, China.

出版信息

Neuroinformatics. 2020 Jan;18(1):1-24. doi: 10.1007/s12021-019-09418-x.

Abstract

Functional connectivity networks, derived from resting-state fMRI data, have been found as effective biomarkers for identifying mild cognitive impairment (MCI) from healthy elderly. However, the traditional functional connectivity network is essentially a low-order network with the assumption that the brain activity is static over the entire scanning period, ignoring temporal variations among the correlations derived from brain region pairs. To overcome this limitation, we proposed a new type of sparse functional connectivity network to precisely describe the relationship of temporal correlations among brain regions. Specifically, instead of using the simple pairwise Pearson's correlation coefficient as connectivity, we first estimate the temporal low-order functional connectivity for each region pair based on an ULS Group constrained-UOLS regression algorithm, where a combination of ultra-least squares (ULS) criterion with a Group constrained topology structure detection algorithm is applied to detect the topology of functional connectivity networks, aided by an Ultra-Orthogonal Least Squares (UOLS) algorithm to estimate connectivity strength. Compared to the classical least squares criterion which only measures the discrepancy between the observed signals and the model prediction function, the ULS criterion takes into consideration the discrepancy between the weak derivatives of the observed signals and the model prediction function and thus avoids the overfitting problem. By using a similar approach, we then estimate the high-order functional connectivity from the low-order connectivity to characterize signal flows among the brain regions. We finally fuse the low-order and the high-order networks using two decision trees for MCI classification. Experimental results demonstrate the effectiveness of the proposed method on MCI classification.

摘要

功能连接网络,从静息态 fMRI 数据中得出,已被发现是识别轻度认知障碍(MCI)和健康老年人的有效生物标志物。然而,传统的功能连接网络本质上是一个低阶网络,假设大脑活动在整个扫描期间是静态的,忽略了从大脑区域对中得出的相关性之间的时间变化。为了克服这个局限性,我们提出了一种新的稀疏功能连接网络,以精确描述大脑区域之间时间相关性的关系。具体来说,我们不是使用简单的成对 Pearson 相关系数作为连接,而是首先基于 ULS 组约束 ULS 回归算法为每个区域对估计时间低阶功能连接,其中超最小二乘法(ULS)准则与组约束拓扑结构检测算法相结合,用于检测功能连接网络的拓扑结构,借助超正交最小二乘法(UOLS)算法来估计连接强度。与仅测量观测信号与模型预测函数之间差异的经典最小二乘准则相比,ULS 准则考虑了观测信号的弱导数与模型预测函数之间的差异,从而避免了过拟合问题。然后,我们使用类似的方法,从低阶连接中估计高阶功能连接,以描述大脑区域之间的信号流动。最后,我们使用两棵决策树融合低阶和高阶网络进行 MCI 分类。实验结果证明了该方法在 MCI 分类中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验