Suppr超能文献

精神分裂症分类中的时空动态功能连接分析

Temporal-spatial dynamic functional connectivity analysis in schizophrenia classification.

作者信息

Pan Cong, Yu Haifei, Fei Xuan, Zheng Xingjuan, Yu Renping

机构信息

Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical Engineering, Zhengzhou University, Zhengzhou, China.

Aviation Maintenance NCO Academy, Air Force Engineering University, Xinyang, China.

出版信息

Front Neurosci. 2022 Aug 17;16:965937. doi: 10.3389/fnins.2022.965937. eCollection 2022.

Abstract

With the development of resting-state functional magnetic resonance imaging (rs-fMRI) technology, the functional connectivity network (FCN) which reflects the statistical similarity of temporal activity between brain regions has shown promising results for the identification of neuropsychiatric disorders. Alteration in FCN is believed to have the potential to locate biomarkers for classifying or predicting schizophrenia (SZ) from healthy control. However, the traditional FCN analysis with stationary assumption, i.e., static functional connectivity network (SFCN) at the time only measures the simple functional connectivity among brain regions, ignoring the dynamic changes of functional connectivity and the high-order dynamic interactions. In this article, the dynamic functional connectivity network (DFCN) is constructed to delineate the characteristic of connectivity variation across time. A high-order functional connectivity network (HFCN) designed based on DFCN, could characterize more complex spatial interactions across multiple brain regions with the potential to reflect complex functional segregation and integration. Specifically, the temporal variability and the high-order network topology features, which characterize the brain FCNs from region and connectivity aspects, are extracted from DFCN and HFCN, respectively. Experiment results on SZ identification prove that our method is more effective (i.e., obtaining a significantly higher classification accuracy, 81.82%) than other competing methods. inspection of the informative features in the individualized classification task further could serve as the potential biomarkers for identifying associated aberrant connectivity in SZ.

摘要

随着静息态功能磁共振成像(rs-fMRI)技术的发展,反映脑区之间时间活动统计相似性的功能连接网络(FCN)在神经精神疾病的识别方面已显示出有前景的结果。FCN的改变被认为有潜力定位用于从健康对照中分类或预测精神分裂症(SZ)的生物标志物。然而,传统的基于静态假设的FCN分析,即当时的静态功能连接网络(SFCN)仅测量脑区之间简单的功能连接,忽略了功能连接的动态变化和高阶动态相互作用。在本文中,构建动态功能连接网络(DFCN)以描绘跨时间的连接变化特征。基于DFCN设计的高阶功能连接网络(HFCN)能够表征多个脑区之间更复杂的空间相互作用,有潜力反映复杂的功能分离和整合。具体而言,分别从DFCN和HFCN中提取从区域和连接方面表征脑FCN的时间变异性和高阶网络拓扑特征。关于SZ识别的实验结果证明,我们的方法比其他竞争方法更有效(即获得显著更高的分类准确率,81.82%)。在个体化分类任务中对信息性特征的检查进一步可以作为识别SZ中相关异常连接的潜在生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a326/9428716/f05a96459d2a/fnins-16-965937-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验