Suppr超能文献

RetroFun-RVS:一种基于回顾性家系的罕见变异分析框架,纳入了功能注释。

RetroFun-RVS: A Retrospective Family-Based Framework for Rare Variant Analysis Incorporating Functional Annotations.

作者信息

Mangnier Loïc, Ruczinski Ingo, Ricard Jasmin, Moreau Claudia, Girard Simon, Maziade Michel, Bureau Alexandre

机构信息

Department of Social and Preventive Medicine, Laval University, Quebec City, Quebec, Canada.

CERVO Brain Research Center, Quebec City, Quebec, Canada.

出版信息

Genet Epidemiol. 2025 Mar;49(2):e70001. doi: 10.1002/gepi.70001.

Abstract

A large proportion of genetic variations involved in complex diseases are rare and located within noncoding regions, making the interpretation of underlying biological mechanisms a daunting task. Although technical and methodological progress has been made to annotate the genome, current disease-rare-variant association tests incorporating such annotations suffer from two major limitations. First, they are generally restricted to case-control designs of unrelated individuals, which often require tens or hundreds of thousands of individuals to achieve sufficient power. Second, they were not evaluated with region-based annotations needed to interpret the causal regulatory mechanisms. In this work, we propose RetroFun-RVS, a new retrospective family-based score test, incorporating functional annotations. A critical feature of the proposed method is to aggregate genotypes to compare against rare variant-sharing expectations among affected family members. Through extensive simulations, we have demonstrated that RetroFun-RVS integrating networks based on 3D genome contacts as functional annotations reach greater power over the region-wide test, other strategies to include subregions and competing methods. Also, the proposed framework shows robustness to non-informative annotations, maintaining its power when causal variants are spread across regions. Asymptotic p-values are susceptible to Type I error inflation when the number of families with rare variants is small, and a bootstrap procedure is recommended in these instances. Application of RetroFun-RVS is illustrated on whole genome sequence in the Eastern Quebec Schizophrenia and Bipolar Disorder Kindred Study with networks constructed from 3D contacts and epigenetic data on neurons. In summary, the integration of functional annotations corresponding to regions or networks with transcriptional impacts in rare variant tests appears promising to highlight regulatory mechanisms involved in complex diseases.

摘要

复杂疾病中涉及的很大一部分基因变异是罕见的,且位于非编码区域,这使得解读潜在生物学机制成为一项艰巨的任务。尽管在注释基因组方面已经取得了技术和方法上的进展,但目前纳入此类注释的疾病-罕见变异关联测试存在两个主要局限性。首先,它们通常仅限于无关个体的病例对照设计,这往往需要数万或数十万个体才能获得足够的检验效能。其次,它们没有使用解读因果调控机制所需的基于区域的注释进行评估。在这项工作中,我们提出了RetroFun-RVS,一种新的基于家系的回顾性评分检验方法,该方法纳入了功能注释。所提出方法的一个关键特征是汇总基因型,以与患病家庭成员之间的罕见变异共享预期进行比较。通过广泛的模拟,我们证明了将基于3D基因组接触的网络作为功能注释整合到RetroFun-RVS中,相对于全区域检验、其他包含子区域的策略和竞争方法,具有更高的检验效能。此外,所提出的框架对非信息性注释具有稳健性,当因果变异分布在多个区域时仍能保持其检验效能。当携带罕见变异的家系数目较少时,渐近p值容易出现I型错误膨胀,在这些情况下建议采用自助法。在魁北克东部精神分裂症和双相情感障碍家族研究的全基因组序列中,展示了RetroFun-RVS在由3D接触和神经元表观遗传数据构建的网络中的应用。总之,在罕见变异测试中整合与具有转录影响的区域或网络相对应的功能注释,似乎有望突出复杂疾病中涉及的调控机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bffc/11775437/652de841bb1d/GEPI-49-0-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验