Suppr超能文献

视觉惯性系统的在线惯性测量单元自校准

Online IMU Self-Calibration for Visual-Inertial Systems.

作者信息

Xiao Yao, Ruan Xiaogang, Chai Jie, Zhang Xiaoping, Zhu Xiaoqing

机构信息

Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China.

College of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China.

出版信息

Sensors (Basel). 2019 Apr 4;19(7):1624. doi: 10.3390/s19071624.

Abstract

Low-cost microelectro mechanical systems (MEMS)-based inertial measurement unit (IMU) measurements are usually affected by inaccurate scale factors, axis misalignments, and g-sensitivity errors. These errors may significantly influence the performance of visual-inertial methods. In this paper, we propose an online IMU self-calibration method for visual-inertial systems equipped with a low-cost inertial sensor. The goal of our method is to concurrently perform 3D pose estimation and online IMU calibration based on optimization methods in unknown environments without any external equipment. To achieve this goal, we firstly develop a novel preintegration method that can handle the IMU intrinsic parameters error propagation. Then, we frame IMU calibration problem into general factors so that we can easily integrate the factors into the current graph-based visual-inertial frameworks and jointly optimize the IMU intrinsic parameters as well as the system states in a big bundle. We evaluate the proposed method with a publicly available dataset. Experimental results verify that the proposed approach is able to accurately calibrate all the considered parameters in real time, leading to significant improvement of estimation precision of visual-inertial system (VINS) compared with the estimation results with offline precalibrated IMU measurements.

摘要

基于低成本微机电系统(MEMS)的惯性测量单元(IMU)测量通常会受到比例因子不准确、轴不对准和重力灵敏度误差的影响。这些误差可能会显著影响视觉惯性方法的性能。在本文中,我们为配备低成本惯性传感器的视觉惯性系统提出了一种在线IMU自校准方法。我们方法的目标是在未知环境中基于优化方法同时执行三维姿态估计和在线IMU校准,无需任何外部设备。为实现这一目标,我们首先开发了一种新颖的预积分方法,该方法可以处理IMU固有参数误差传播。然后,我们将IMU校准问题构建为一般因子,以便能够轻松地将这些因子集成到当前基于图的视觉惯性框架中,并在一个大的束中联合优化IMU固有参数以及系统状态。我们使用一个公开可用的数据集对所提出的方法进行了评估。实验结果验证了所提出的方法能够实时准确地校准所有考虑的参数,与使用离线预校准IMU测量的估计结果相比,显著提高了视觉惯性系统(VINS)的估计精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de5f/6480050/a8d0c08e9999/sensors-19-01624-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验