The Joint BioEnergy Institute, Emeryville, California, USA.
Lawrence Livermore National Laboratory, Livermore, California, USA.
J Bacteriol. 2019 Jun 10;201(13). doi: 10.1128/JB.00069-19. Print 2019 Jul 1.
Plant cell walls contain a renewable, nearly limitless supply of sugar that could be used to support microbial production of commodity chemicals and biofuels. Imidazolium ionic liquid (IIL) solvents are among the best reagents for gaining access to the sugars in this otherwise recalcitrant biomass. However, the sugars from IIL-treated biomass are inevitably contaminated with residual IILs that inhibit growth in bacteria and yeast, blocking biochemical production by these organisms. IIL toxicity is, therefore, a critical roadblock in many industrial biosynthetic pathways. Although several IIL-tolerant (IIL) bacterial and yeast isolates have been identified in nature, few genetic mechanisms have been identified. In this study, we identified two IIL isolates as well as a spontaneous IIL lab strain that are tolerant to high levels of two widely used IILs. We demonstrate that all three IIL strains contain one or more pumps of the small multidrug resistance (SMR) family, and two of these strains contain mutations that affect an adjacent regulatory guanidine riboswitch. Furthermore, we show that the regulation of by the guanidine II riboswitch can be exploited to promote IIL tolerance by the simple addition of guanidine to the medium. Our results demonstrate the critical role that transporter genes play in IIL tolerance in their native bacterial hosts. The study presented here is another step in engineering IIL tolerance into industrial strains toward overcoming this key gap in biofuels and industrial biochemical production processes. This study identifies bacteria that are tolerant to ionic liquid solvents used in the production of biofuels and industrial biochemicals. For industrial microbiology, it is essential to find less-harmful reagents and microbes that are resistant to their cytotoxic effects. We identified a family of small multidrug resistance efflux transporters, which are responsible for the tolerance of these strains. We also found that this resistance can be caused by mutations in the sequences of guanidine-specific riboswitches that regulate these efflux pumps. Extending this knowledge, we demonstrated that guanidine itself can promote ionic liquid tolerance. Our findings will inform genetic engineering strategies that improve conversion of cellulosic sugars into biofuels and biochemicals in processes where low concentrations of ionic liquids surpass bacterial tolerance.
植物细胞壁中含有可再生且几乎无限供应的糖,可用于支持微生物生产商品化学品和生物燃料。咪唑鎓离子液体(IIL)溶剂是获取这种难以处理的生物质中糖的最佳试剂之一。然而,来自 IIL 处理生物质的糖不可避免地会受到残留 IIL 的污染,这些残留 IIL 会抑制细菌和酵母的生长,从而阻止这些生物的生化生产。因此,IIL 毒性是许多工业生物合成途径的关键障碍。尽管已经在自然界中鉴定出几种 IIL 耐受(IIL)细菌和酵母分离株,但很少有遗传机制被鉴定出来。在这项研究中,我们鉴定了两种 IIL 分离株以及一种自发的 IIL 实验室菌株,它们对两种广泛使用的 IIL 具有高耐受性。我们证明所有三种 IIL 菌株都含有一种或多种小多药耐药(SMR)家族的泵,其中两种菌株含有影响相邻调节胍基核糖开关的突变。此外,我们表明可以通过简单地向培养基中添加胍基来利用胍基 II 核糖开关对 的调节来促进 IIL 耐受性。我们的结果表明,转运蛋白基因在其天然细菌宿主中对 IIL 耐受性起着关键作用。本研究是将 IIL 耐受性工程化到工业菌株中的又一步,旨在克服生物燃料和工业生化生产过程中的这一关键差距。本研究鉴定了耐受用于生产生物燃料和工业生化产品的离子液体溶剂的细菌。对于工业微生物学,找到对其细胞毒性作用具有抗性的危害性较小的试剂和微生物至关重要。我们鉴定了一组小多药耐药外排转运蛋白,它们负责这些菌株的耐受性。我们还发现,这种抗性可以是由调节这些外排泵的胍基特异性核糖开关序列中的突变引起的。扩展这方面的知识,我们证明胍基本身可以促进离子液体耐受性。我们的发现将为遗传工程策略提供信息,这些策略可以提高纤维素糖转化为生物燃料和生化产品的效率,而在这些过程中,低浓度的离子液体超过了细菌的耐受性。