Suppr超能文献

在离子液体胁迫下,通过突变必需的大肠杆菌基因 cydC,可恢复生物燃料的生产水平并提高其耐受性。

Restoration of biofuel production levels and increased tolerance under ionic liquid stress is enabled by a mutation in the essential Escherichia coli gene cydC.

机构信息

Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.

出版信息

Microb Cell Fact. 2018 Oct 8;17(1):159. doi: 10.1186/s12934-018-1006-8.

Abstract

BACKGROUND

Microbial production of chemicals from renewable carbon sources enables a sustainable route to many bioproducts. Sugar streams, such as those derived from biomass pretreated with ionic liquids (IL), provide efficiently derived and cost-competitive starting materials. A limitation to this approach is that residual ILs in the pretreated sugar source can be inhibitory to microbial growth and impair expression of the desired biosynthetic pathway.

RESULTS

We utilized laboratory evolution to select Escherichia coli strains capable of robust growth in the presence of the IL, 1-ethyl-3-methyl-imidizolium acetate ([EMIM]OAc). Whole genome sequencing of the evolved strain identified a point mutation in an essential gene, cydC, which confers tolerance to two different classes of ILs at concentrations that are otherwise growth inhibitory. This mutation, cydC-D86G, fully restores the specific production of the bio-jet fuel candidate D-limonene, as well as the biogasoline and platform chemical isopentenol, in growth medium containing ILs. Similar amino acids at this position in cydC, such as cydC-D86V, also confer tolerance to [EMIM]OAc. We show that this [EMIM]OAc tolerance phenotype of cydC-D86G strains is independent of its wild-type function in activating the cytochrome bd-I respiratory complex. Using shotgun proteomics, we characterized the underlying differential cellular responses altered in this mutant. While wild-type E. coli cannot produce detectable amounts of either product in the presence of ILs at levels expected to be residual in sugars from pretreated biomass, the engineered cydC-D86G strains produce over 200 mg/L D-limonene and 350 mg/L isopentenol, which are among the highest reported titers in the presence of [EMIM]OAc.

CONCLUSIONS

The optimized strains in this study produce high titers of two candidate biofuels and bioproducts under IL stress. Both sets of production strains surpass production titers from other IL tolerant mutants in the literature. Our application of laboratory evolution identified a gain of function mutation in an essential gene, which is unusual in comparison to other published IL tolerant mutants.

摘要

背景

从可再生碳源生产微生物化学品使许多生物制品能够实现可持续生产。糖流,如那些从用离子液体(IL)预处理的生物质中获得的糖流,提供了高效衍生且具有成本竞争力的起始材料。这种方法的一个限制是,预处理糖源中的残留 IL 可能对微生物的生长有抑制作用,并损害所需生物合成途径的表达。

结果

我们利用实验室进化选择了能够在 IL 1-乙基-3-甲基-咪唑鎓乙酸盐([EMIM]OAc)存在下健壮生长的大肠杆菌菌株。对进化菌株的全基因组测序发现,一个必需基因 cydC 中的一个点突变赋予了对两种不同类别的 IL 的耐受性,而这些 IL 在浓度上是生长抑制的。该突变 cydC-D86G 完全恢复了在含有 IL 的生长培养基中生物喷气燃料候选物 D-柠檬烯以及生物汽油和平台化学品异戊烯醇的特异性生产。cydC 中该位置的类似氨基酸,如 cydC-D86V,也赋予了对 [EMIM]OAc 的耐受性。我们表明,cydC-D86G 菌株的这种 [EMIM]OAc 耐受性表型与其在激活细胞色素 bd-I 呼吸复合物中的野生型功能无关。使用鸟枪法蛋白质组学,我们描述了该突变体中改变的潜在差异细胞反应。虽然野生型大肠杆菌在预处理生物质糖中残留水平预期的 IL 存在下不能产生可检测量的任何产物,但工程化的 cydC-D86G 菌株可产生超过 200mg/L 的 D-柠檬烯和 350mg/L 的异戊烯醇,这是在 [EMIM]OAc 存在下报告的最高滴度之一。

结论

本研究中的优化菌株在 IL 应激下产生两种候选生物燃料和生物制品的高滴度。这两组生产菌株的产量均超过了文献中其他 IL 耐受突变体的产量。我们应用实验室进化在一个必需基因中发现了一个功能获得性突变,与其他已发表的 IL 耐受突变体相比,这是不寻常的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c19/6174563/651c4524a8ed/12934_2018_1006_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验