Suppr超能文献

基于软计算技术的脑肿瘤分类临床支持系统。

A Clinical Support System for Brain Tumor Classification Using Soft Computing Techniques.

机构信息

Department of Computer Science and Engineering, Muthayammal Engineering College, Rasipuram, Namakkal (Dt), Tamilnadu, 637 408, India.

Department of Electronics and Communication Engineering, Mahendra College of Engineering, Salem (Dt), Tamilnadu, 636 106, India.

出版信息

J Med Syst. 2019 Apr 13;43(5):144. doi: 10.1007/s10916-019-1266-9.

Abstract

A brain tumor is an accumulation of abnormal cells in human brain. As tumor increases in size, it induces brain damage. Hence it is essential to diagnose the type of brain tumor. The effective modality used for brain tumor diagnose is MRI because of its remarkable image resolution, the speed of acquisition, and high safety profile for patients. The analysis of brain MRI is an important part of patient care and decision. Hence in the proposed Clinical Support System, the brain MRI image is preprocessed using Genetic Optimized Median Filter followed by brain tumor region segmentation using Hierarchical Fuzzy Clustering Algorithm. The features of the tumor region are extracted through GLCM feature extraction method. Lion Optimized Boosting Support Vector machine model is used for further classification of tumor by Brain Tumor Image Segmentation (BraTS) dataset. Hence the proposed clinical support system provides an integrated model for Detection and classification of brain tumor which assists the doctors in appropriate evaluation of tumor.

摘要

脑肿瘤是人类大脑中异常细胞的堆积。随着肿瘤体积的增大,它会引起脑损伤。因此,诊断脑肿瘤的类型至关重要。MRI 是用于脑肿瘤诊断的有效方式,因为它具有出色的图像分辨率、采集速度快,对患者安全系数高。对脑 MRI 的分析是患者护理和决策的重要组成部分。因此,在提出的临床支持系统中,使用遗传优化中值滤波器对脑 MRI 图像进行预处理,然后使用分层模糊聚类算法对脑肿瘤区域进行分割。通过灰度共生矩阵特征提取方法提取肿瘤区域的特征。使用狮子优化提升支持向量机模型对脑肿瘤图像分割(BraTS)数据集进行肿瘤的进一步分类。因此,所提出的临床支持系统为脑肿瘤的检测和分类提供了一个集成模型,帮助医生对肿瘤进行适当评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验