Suppr超能文献

使用基于知识的技术进行肿瘤自动分割。

Automatic tumor segmentation using knowledge-based techniques.

作者信息

Clark M C, Hall L O, Goldgof D B, Velthuizen R, Murtagh F R, Silbiger M S

机构信息

Department of Computer Science and Engineering, University of South Florida, Tampa 33620, USA.

出版信息

IEEE Trans Med Imaging. 1998 Apr;17(2):187-201. doi: 10.1109/42.700731.

Abstract

A system that automatically segments and labels glioblastoma-multiforme tumors in magnetic resonance images (MRI's) of the human brain is presented. The MRI's consist of T1-weighted, proton density, and T2-weighted feature images and are processed by a system which integrates knowledge-based (KB) techniques with multispectral analysis. Initial segmentation is performed by an unsupervised clustering algorithm. The segmented image, along with cluster centers for each class are provided to a rule-based expert system which extracts the intracranial region. Multispectral histogram analysis separates suspected tumor from the rest of the intracranial region, with region analysis used in performing the final tumor labeling. This system has been trained on three volume data sets and tested on thirteen unseen volume data sets acquired from a single MRI system. The KB tumor segmentation was compared with supervised, radiologist-labeled "ground truth" tumor volumes and supervised k-nearest neighbors tumor segmentations. The results of this system generally correspond well to ground truth, both on a per slice basis and more importantly in tracking total tumor volume during treatment over time.

摘要

提出了一种在人脑磁共振成像(MRI)中自动分割和标记多形性胶质母细胞瘤肿瘤的系统。这些MRI由T1加权、质子密度和T2加权特征图像组成,并由一个将基于知识(KB)的技术与多光谱分析相结合的系统进行处理。初始分割由无监督聚类算法执行。分割后的图像以及每个类别的聚类中心被提供给一个基于规则的专家系统,该系统提取颅内区域。多光谱直方图分析将疑似肿瘤与颅内区域的其他部分分开,区域分析用于进行最终的肿瘤标记。该系统已在三个体积数据集上进行训练,并在从单个MRI系统获取的十三个未见体积数据集上进行测试。将基于KB的肿瘤分割与有监督的、放射科医生标记的“真实”肿瘤体积以及有监督的k近邻肿瘤分割进行了比较。该系统的结果在逐切片的基础上,更重要的是在跟踪治疗期间肿瘤总体积随时间的变化方面,通常与真实情况非常吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验