IEEE Trans Med Imaging. 2019 Nov;38(11):2676-2686. doi: 10.1109/TMI.2019.2910386. Epub 2019 Apr 11.
A new parameter estimation algorithm, MERLIN, is presented for accurate and robust multi-exponential relaxometry using magnetic resonance imaging, a tool that can provide valuable insight into the tissue microstructure of the brain. Multi-exponential relaxometry is used to analyze the myelin water fraction and can help to detect related diseases. However, the underlying problem is ill-conditioned, and as such, is extremely sensitive to noise and measurement imperfections, which can lead to less precise and more biased parameter estimates. MERLIN is a fully automated, multi-voxel approach that incorporates state-of-the-art l -regularization to enforce sparsity and spatial consistency of the estimated distributions. The proposed method is validated in simulations and in vivo experiments, using a multi-echo gradient-echo (MEGE) sequence at 3 T. MERLIN is compared to the conventional single-voxel l -regularized NNLS (rNNLS) and a multi-voxel extension with spatial priors (rNNLS + SP), where it consistently showed lower root mean squared errors of up to 70 percent for all parameters of interest in these simulations.
提出了一种新的参数估计算法 MERLIN,用于磁共振成像的精确和鲁棒多指数弛豫定量分析,这一工具可以为大脑组织微观结构提供有价值的见解。多指数弛豫定量分析用于分析髓鞘水分数,可以帮助检测相关疾病。然而,基础问题是病态的,因此,对噪声和测量不完美极其敏感,这可能导致参数估计不够精确和更有偏差。MERLIN 是一种全自动的多体素方法,它采用了最先进的 l 正则化方法来强制估计分布的稀疏性和空间一致性。该方法在模拟和体内实验中得到了验证,使用了 3 T 多回波梯度回波(MEGE)序列。MERLIN 与传统的单体素 l 正则化 NNLS(rNNLS)和具有空间先验的多体素扩展(rNNLS + SP)进行了比较,在这些模拟中,它始终表现出更低的均方根误差,所有感兴趣的参数的误差低至 70%。