IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jul;66(7):1185-1197. doi: 10.1109/TUFFC.2019.2911289. Epub 2019 Apr 15.
Shock scattering histotripsy involves a complex interaction between positive and negative phases of an acoustic burst to initiate a robust cavitation bubble cloud. To more precisely study these effects and optimize shock scattering histotripsy therapy, we constructed a frequency compounding transducer to generate pseudomonopolar ultrasound pulses. The transducer consisted of 113 individual piezoelectric elements with various resonant frequencies (250 kHz, 500 kHz, 750 kHz, 1 MHz, 1.5 MHz, 2 MHz, and 3 MHz). For each resonant frequency, an extremely short pulse could be generated. Pseudomonopolar peak positive pulses were generated by aligning the principal peak positive pressures of individual frequency components temporally, so that they added constructively, and destructive interference occurred outside the peak-positive-overlapped temporal window. After inverting the polarity of the excitation signals, pseudomonopolar peak negative pulses were generated similarly by aligning principal peak negative pressures. Decoupling the positive and negative acoustic phases could have significant advantages for therapeutic applications enhancing precision and avoiding cavitation at tissue interfaces by using mostly positive pressure pulses. For example, we show that 16 shock scattering bubble clouds can be generated using only peak positive pulses following a single peak negative pulse that initiates a pressure release "seed cloud" from which the first shock front is "scattered." Subsequent positive only pulses result in a precise elongated lesion within red blood cell phantoms.
震散式 histotripsy 涉及声脉冲的正相和负相之间的复杂相互作用,以引发强大的空化气泡云。为了更精确地研究这些效应并优化震散式 histotripsy 治疗,我们构建了一个频率复合换能器来产生伪单极超声脉冲。该换能器由具有不同谐振频率(250 kHz、500 kHz、750 kHz、1 MHz、1.5 MHz、2 MHz 和 3 MHz)的 113 个单独的压电元件组成。对于每个谐振频率,都可以产生极短的脉冲。通过在时间上对齐各个频率分量的主峰值正压,可以产生伪单极峰值正脉冲,从而使它们建设性地相加,而在峰值正重叠的时间窗口之外则会发生相消干涉。反转激励信号的极性后,通过对齐主峰值负压也可以类似地产生伪单极峰值负脉冲。解耦正相和负相声波相位对于治疗应用具有显著优势,可以通过主要使用正压脉冲来提高精度并避免组织界面处的空化。例如,我们展示了在单个产生压力释放“种子云”的负峰值脉冲之后,仅使用峰值正脉冲可以产生 16 个震散式气泡云,其中第一个冲击波从该“种子云”“散射”出来。随后的仅正脉冲会在红细胞模拟物中产生精确的拉长损伤。