Suppr超能文献

RFCM:宫颈癌中 miRNA-mRNA 调控模块的计算方法。

RFCM: Computational Method for Identification of miRNA-mRNA Regulatory Modules in Cervical Cancer.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2020 Sep-Oct;17(5):1729-1740. doi: 10.1109/TCBB.2019.2910851. Epub 2019 Apr 15.

Abstract

Cervical cancer is a leading severe malignancy throughout the world. Molecular processes and biomarkers leading to tumor progression in cervical cancer are either unknown or only partially understood. An increasing number of studies have shown that microRNAs play an important role in tumorigenesis so understanding the regulatory mechanism of miRNAs in gene-regulatory network will help elucidate the complex biological processes that occur during malignancy. Functional genomics data provides opportunities to study the aberrant microRNA-messenger RNA (miRNA-mRNA) interaction. Identification of miRNA-mRNA regulatory modules will aid deciphering aberrant transcriptional regulatory network in cervical cancer but is computationally challenging. In this regard, an algorithm, termed as relevant and functionally consistent miRNA-mRNA modules (RFCM), is proposed. It integrates miRNA and mRNA expression data of cervical cancer for identification of potential miRNA-mRNA modules. It selects set of miRNA-mRNA modules by maximizing relation of mRNAs with miRNA and functional similarity between selected mRNAs. Later, using the knowledge of the miRNA-miRNA synergistic network different modules are fused and finally a set of modules are generated containing several miRNAs as well as mRNAs. This type of module explains the underlying biological pathways containing multiple miRNAs and mRNAs. The effectiveness of the proposed approach over other existing methods has been demonstrated on a miRNA and mRNA expression data of cervical cancer with respect to enrichment analyses and other standard metrices. The prognostic value of the genes in a module with respect to cervical cancer is also demonstrated. The approach was found to generate more robust, integrated, and functionally enriched miRNA-mRNA modules in cervical cancer.

摘要

宫颈癌是全球范围内主要的严重恶性肿瘤之一。导致宫颈癌肿瘤进展的分子过程和生物标志物要么未知,要么只是部分了解。越来越多的研究表明,microRNAs 在肿瘤发生中发挥着重要作用,因此,了解 microRNAs 在基因调控网络中的调控机制将有助于阐明恶性肿瘤发生过程中发生的复杂生物学过程。功能基因组学数据为研究异常 microRNA-信使 RNA(miRNA-mRNA)相互作用提供了机会。鉴定 miRNA-mRNA 调控模块将有助于破译宫颈癌中异常的转录调控网络,但这在计算上具有挑战性。在这方面,提出了一种称为相关且功能一致的 miRNA-mRNA 模块(RFCM)的算法。它整合了宫颈癌的 miRNA 和 mRNA 表达数据,以识别潜在的 miRNA-mRNA 模块。它通过最大化与 miRNA 的 mRNA 关系和所选 mRNA 之间的功能相似性来选择 miRNA-mRNA 模块集。然后,使用 miRNA-miRNA 协同网络的知识融合不同的模块,最终生成一组包含多个 miRNA 和 mRNAs 的模块。这种类型的模块解释了包含多个 miRNA 和 mRNAs 的潜在生物学途径。该方法在宫颈癌的 miRNA 和 mRNA 表达数据上进行了评估,通过富集分析和其他标准指标证明了其优于其他现有方法的有效性。还证明了模块中基因对宫颈癌的预后价值。该方法被发现可以在宫颈癌中生成更稳健、集成和功能丰富的 miRNA-mRNA 模块。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验