Suppr超能文献

重新审视 SSD:第 I 部分-A 用于物种敏感性分布分析的样本量指导框架。

SSDs Revisited: Part I-A Framework for Sample Size Guidance on Species Sensitivity Distribution Analysis.

机构信息

Data & Modeling Sciences, The Procter & Gamble Company, Mason, Ohio, USA.

Environmental Stewardship and Sustainability, The Procter & Gamble Company, Mason, Ohio, USA.

出版信息

Environ Toxicol Chem. 2019 Jul;38(7):1514-1525. doi: 10.1002/etc.4445. Epub 2019 Jun 24.

Abstract

We propose a framework on sample size for species sensitivity distribution (SSD) analyses, with perspectives on Bayesian, frequentist, and even nonparametric approaches to estimation. The intent of a statistical sample size analysis is to ensure that the implementation of a statistical model will satisfy a minimum performance standard when relevant conditions are met. It requires that a statistical model be fully specified and that the means of measuring its performance as a function of sample size be detailed. Defining the model conditions under which sample size is calculated is often the most difficult, and important, aspect of sample size analysis because if the model is not representative, then the sample size analysis will provide incorrect guidance. Definitive guidance on sample size requires general agreement on representative models and their performance from stakeholders in important domains such as chemical safety assessments involving government regulators and industry; the present study provides an initial framework that could be used to this end in the future. In addition, our analysis provides immediate value for understanding how well current SSD analyses perform under a few basic models, sample sizes, and quantitative performance criteria. The results confirm that many analyses are adequately sized to estimate hazardous concentration percentile values (typically the 5th percentile for chemical hazard assessments). However, on the low end of sizes seen in common practice, hazardous concentration estimates can be more than 1 order of magnitude greater than the model-defined value. Environ Toxicol Chem 2019;38:1514-1525. © 2019 SETAC.

摘要

我们提出了一个物种敏感度分布 (SSD) 分析样本量框架,从贝叶斯、频率主义甚至非参数方法的角度探讨了估计问题。统计样本量分析的目的是确保在满足相关条件时,统计模型的实施将满足最低性能标准。它要求对统计模型进行全面说明,并详细说明衡量其性能作为样本量函数的方法。定义计算样本量的模型条件通常是样本量分析中最困难和最重要的方面,因为如果模型不具有代表性,那么样本量分析将提供错误的指导。在涉及政府监管机构和行业的化学安全评估等重要领域,利益相关者需要就代表性模型及其性能达成共识,才能为样本量提供明确的指导;本研究提供了一个初步框架,未来可以以此为目的进行使用。此外,我们的分析还提供了即时价值,可了解在少数基本模型、样本量和定量性能标准下,当前 SSD 分析的表现如何。结果证实,许多分析有足够的能力来估计危险浓度百分位数值(通常是化学危害评估的第 5 百分位数)。然而,在常见实践中看到的规模低端,危险浓度估计值可能比模型定义的值大 1 个数量级以上。环境毒物化学 2019;38:1514-1525. © 2019 SETAC。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验