Suppr超能文献

基于三种藻类、甲壳类动物和鱼类易于获取的描述符和毒性数据估计物种敏感性分布。

Estimating species sensitivity distributions on the basis of readily obtainable descriptors and toxicity data for three species of algae, crustaceans, and fish.

作者信息

Iwasaki Yuichi, Sorgog Kiyan

机构信息

Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.

出版信息

PeerJ. 2021 Mar 3;9:e10981. doi: 10.7717/peerj.10981. eCollection 2021.

Abstract

Estimation of species sensitivity distributions (SSDs) is a crucial approach to predicting ecological risks and water quality benchmarks, but the amount of data required to implement this approach is a serious constraint on the application of SSDs to chemicals for which there are few or no toxicity data. The development of statistical models to directly estimate the mean and standard deviation (SD) of the logarithms of log-normally distributed SSDs has recently been proposed to overcome this problem. To predict these two parameters, we developed multiple linear regression models that included, in addition to readily obtainable descriptors, the mean and SD of the logarithms of the concentrations that are acutely toxic to one algal, one crustacean, and one fish species, as predictors. We hypothesized that use of the three species' mean and SD would improve the accuracy of the predicted means and SDs of the logarithms of the SSDs. We derived SSDs for 60 chemicals based on quality-assured acute toxicity data. Forty-five of the chemicals were used for model fitting, and 15 for external validation. Our results supported previous findings that models developed on the basis of only descriptors such as log had limited ability to predict the mean and SD of SSD (e.g., = 0.62 and 0.49, respectively). Inclusion of the three species' mean and SD, in addition to the descriptors, in the models markedly improved the predictions of the means and SDs of SSDs (e.g., = 0.96 and 0.75, respectively). We conclude that use of the three species' mean and SD is promising for more accurately estimating an SSD and thus the hazardous concentration for 5% of species in cases where limited ecotoxicity data are available.

摘要

物种敏感度分布(SSD)的估算对于预测生态风险和水质基准而言是一种至关重要的方法,但实施该方法所需的数据量严重限制了SSD在毒性数据稀少或全无的化学品中的应用。最近有人提出开发统计模型来直接估算对数正态分布的SSD对数的均值和标准差(SD),以克服这一问题。为了预测这两个参数,我们开发了多元线性回归模型,该模型除了易于获取的描述符外,还将对一种藻类、一种甲壳类动物和一种鱼类具有急性毒性的浓度对数的均值和SD作为预测变量。我们假设使用这三种物种的均值和SD将提高预测的SSD对数均值和SD的准确性。我们基于质量保证的急性毒性数据得出了60种化学品的SSD。其中45种化学品用于模型拟合,15种用于外部验证。我们的结果支持了先前的研究发现,即仅基于诸如log等描述符开发的模型预测SSD均值和SD的能力有限(例如,分别为0.62和0.49)。在模型中除了包含描述符外,还纳入这三种物种的均值和SD,显著改善了对SSD均值和SD的预测(例如,分别为0.96和0.75)。我们得出结论,在生态毒性数据有限的情况下,使用这三种物种的均值和SD有望更准确地估算SSD,从而更准确地估算5%物种的危险浓度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5f2/7936562/1bcd2a0f7b28/peerj-09-10981-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验