Suppr超能文献

海水化学毒性能否根据淡水毒性进行预测?基于物种敏感性分布的综合评估。

Can Chemical Toxicity in Saltwater Be Predicted from Toxicity in Freshwater? A Comprehensive Evaluation Using Species Sensitivity Distributions.

机构信息

Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan.

Health and Environmental Risk Research Division, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.

出版信息

Environ Toxicol Chem. 2022 Aug;41(8):2021-2027. doi: 10.1002/etc.5354. Epub 2022 May 27.

Abstract

Species sensitivity distributions (SSDs) play an important role in ecological risk assessment. Estimating SSDs requires toxicity data for many species, but reports on saltwater species are often limited compared to freshwater species. This limitation can constrain informed management of saltwater quality for the protection of marine ecosystems. We investigated the relationships between the parameters (i.e., mean and standard deviation [SD]) of freshwater and saltwater log-normal SSDs to determine how accurately saltwater toxicity could be estimated from freshwater toxicity test data. We estimated freshwater and saltwater SSDs for 104 chemicals with reported acute toxicity data for five or more species and compared their means, SDs, and hazardous concentrations for 5% of the species (HC5) derived from the acute SSDs. Standard major axis regression analyses generally showed that log-log relationships between freshwater and saltwater SSD means, SDs, and HC5 values were nearly 1:1. In addition, the ratios of freshwater-to-saltwater SSD means and HC5 values for most of the 104 chemicals fell within the range 0.1-10. Although such a strong correlation was not observed for SSD SDs (r  < 0.5), differences between freshwater and saltwater SSD SDs were relatively small. These results indicate that saltwater acute SSDs can be reasonably estimated using freshwater acute SSDs. Because the differences of the means and SDs between freshwater and saltwater SSDs were larger when the number of test species used for SSD estimation was lower (i.e., five to seven species in the present study), obtaining toxicity data for an adequate number of species will be key to better approximation of a saltwater acute SSD from a freshwater acute SSD for a given chemical. Environ Toxicol Chem 2022;41:2021-2027. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

摘要

物种敏感性分布(SSD)在生态风险评估中起着重要作用。估计 SSD 需要许多物种的毒性数据,但与淡水物种相比,海水物种的报告通常有限。这种限制可能会限制对海水质量的明智管理,以保护海洋生态系统。我们研究了淡水和海水对数正态 SSD 参数(即均值和标准差 [SD])之间的关系,以确定从淡水毒性测试数据准确估计海水毒性的程度。我们估计了 104 种具有报告的五种或更多物种急性毒性数据的化学品的淡水和海水 SSD,并比较了它们的均值、SD 和急性 SSD 得出的物种 5%危害浓度(HC5)。标准主要轴回归分析通常表明,淡水和海水 SSD 均值、SD 和 HC5 值之间的对数对关系几乎为 1:1。此外,对于 104 种化学品中的大多数,淡水与海水 SSD 均值和 HC5 值的比值在 0.1-10 范围内。尽管 SSD SD 之间没有观察到如此强的相关性(r<0.5),但淡水和海水 SSD SD 之间的差异相对较小。这些结果表明,可以使用淡水急性 SSD 合理估计海水急性 SSD。由于用于 SSD 估计的测试物种数量较低时(即本研究中的五个到七个物种),淡水和海水 SSD 之间的均值和 SD 差异较大,因此获得足够数量的物种的毒性数据将是从给定化学物质的淡水急性 SSD 更好地近似海水急性 SSD 的关键。环境毒理化学 2022;41:2021-2027。©2022 作者。环境毒理化学由 Wiley 期刊公司代表 SETAC 出版。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b6a/9542858/c1a06a7533f2/ETC-41-2021-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验