Suppr超能文献

在常效应下,匹配方法的表现优于未匹配的普通最小二乘法回归。

Performance of Matching Methods as Compared With Unmatched Ordinary Least Squares Regression Under Constant Effects.

机构信息

Center for Population Health Sciences, Stanford University, Palo Alto, California.

Center for Primary Care and Outcomes Research, Department of Medicine, School of Medicine, Stanford University, Palo Alto, California.

出版信息

Am J Epidemiol. 2019 Jul 1;188(7):1345-1354. doi: 10.1093/aje/kwz093.

Abstract

Matching methods are assumed to reduce the likelihood of a biased inference compared with ordinary least squares (OLS) regression. Using simulations, we compared inferences from propensity score matching, coarsened exact matching, and unmatched covariate-adjusted OLS regression to identify which methods, in which scenarios, produced unbiased inferences at the expected type I error rate of 5%. We simulated multiple data sets and systematically varied common support, discontinuities in the exposure and/or outcome, exposure prevalence, and analytical model misspecification. Matching inferences were often biased in comparison with OLS, particularly when common support was poor; when analysis models were correctly specified and common support was poor, the type I error rate was 1.6% for propensity score matching (statistically inefficient), 18.2% for coarsened exact matching (high), and 4.8% for OLS (expected). Our results suggest that when estimates from matching and OLS are similar (i.e., confidence intervals overlap), OLS inferences are unbiased more often than matching inferences; however, when estimates from matching and OLS are dissimilar (i.e., confidence intervals do not overlap), matching inferences are unbiased more often than OLS inferences. This empirical "rule of thumb" may help applied researchers identify situations in which OLS inferences may be unbiased as compared with matching inferences.

摘要

匹配方法被认为可以降低有偏推断的可能性,与普通最小二乘法(OLS)回归相比。我们通过模拟,比较了倾向评分匹配、粗糙精确匹配和未匹配协变量调整的 OLS 回归的推断,以确定哪种方法在何种情况下,以预期的 5%的Ⅰ型错误率产生无偏推断。我们模拟了多个数据集,并系统地改变了共同支持、暴露和/或结果的不连续性、暴露的普遍性以及分析模型的误指定。与 OLS 相比,匹配推断往往存在偏差,尤其是在共同支持较差的情况下;当分析模型正确指定且共同支持较差时,倾向评分匹配的Ⅰ型错误率为 1.6%(统计效率低下),粗糙精确匹配的Ⅰ型错误率为 18.2%(高),OLS 的Ⅰ型错误率为 4.8%(预期)。我们的结果表明,当匹配和 OLS 的估计值相似(即置信区间重叠)时,OLS 推断比匹配推断更无偏;然而,当匹配和 OLS 的估计值不同时(即置信区间不重叠),匹配推断比 OLS 推断更无偏。这种经验性的“经验法则”可能有助于应用研究人员确定在哪些情况下 OLS 推断可能比匹配推断更无偏。

相似文献

6
Consequences of ignoring clustering in linear regression.忽略线性回归中的聚类的后果。
BMC Med Res Methodol. 2021 Jul 7;21(1):139. doi: 10.1186/s12874-021-01333-7.

本文引用的文献

6
Doubly robust estimation of causal effects.双重稳健估计因果效应。
Am J Epidemiol. 2011 Apr 1;173(7):761-7. doi: 10.1093/aje/kwq439. Epub 2011 Mar 8.
8
Temporary work and depressive symptoms: a propensity score analysis.临时工作与抑郁症状:倾向评分分析。
Soc Sci Med. 2010 Jun;70(12):1982-1987. doi: 10.1016/j.socscimed.2010.02.008. Epub 2010 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验