Suppr超能文献

双重稳健估计因果效应。

Doubly robust estimation of causal effects.

机构信息

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Am J Epidemiol. 2011 Apr 1;173(7):761-7. doi: 10.1093/aje/kwq439. Epub 2011 Mar 8.

Abstract

Doubly robust estimation combines a form of outcome regression with a model for the exposure (i.e., the propensity score) to estimate the causal effect of an exposure on an outcome. When used individually to estimate a causal effect, both outcome regression and propensity score methods are unbiased only if the statistical model is correctly specified. The doubly robust estimator combines these 2 approaches such that only 1 of the 2 models need be correctly specified to obtain an unbiased effect estimator. In this introduction to doubly robust estimators, the authors present a conceptual overview of doubly robust estimation, a simple worked example, results from a simulation study examining performance of estimated and bootstrapped standard errors, and a discussion of the potential advantages and limitations of this method. The supplementary material for this paper, which is posted on the Journal's Web site (http://aje.oupjournals.org/), includes a demonstration of the doubly robust property (Web Appendix 1) and a description of a SAS macro (SAS Institute, Inc., Cary, North Carolina) for doubly robust estimation, available for download at http://www.unc.edu/~mfunk/dr/.

摘要

双重稳健估计结合了一种结果回归形式和一种暴露(即倾向评分)模型,以估计暴露对结果的因果效应。当单独用于估计因果效应时,只有在统计模型正确指定的情况下,结果回归和倾向评分方法才是无偏的。双重稳健估计器将这两种方法结合在一起,使得只有 2 种模型中的 1 种需要正确指定,才能获得无偏的效应估计器。在这篇关于双重稳健估计器的介绍性文章中,作者提出了双重稳健估计的概念概述、一个简单的实例、模拟研究结果,该研究检查了估计和自举标准误差的性能,以及对这种方法的潜在优点和局限性的讨论。本文的补充材料(发布在杂志的网站上:http://aje.oupjournals.org/)包括对双重稳健性的演示(Web 附录 1)和一个用于双重稳健估计的 SAS 宏(SAS 研究所,北卡罗来纳州卡里)的描述,可在 http://www.unc.edu/~mfunk/dr/ 下载。

相似文献

1
Doubly robust estimation of causal effects.双重稳健估计因果效应。
Am J Epidemiol. 2011 Apr 1;173(7):761-7. doi: 10.1093/aje/kwq439. Epub 2011 Mar 8.
3
Stratified doubly robust estimators for the average causal effect.平均因果效应的分层双稳健估计量。
Biometrics. 2014 Jun;70(2):270-7. doi: 10.1111/biom.12157. Epub 2014 Feb 26.
6
Targeted maximum likelihood estimation in safety analysis.目标最大似然估计在安全性分析中的应用。
J Clin Epidemiol. 2013 Aug;66(8 Suppl):S91-8. doi: 10.1016/j.jclinepi.2013.02.017.

引用本文的文献

本文引用的文献

4
Invited commentary: positivity in practice.特邀评论:实践中的积极性。
Am J Epidemiol. 2010 Mar 15;171(6):674-7; discussion 678-81. doi: 10.1093/aje/kwp436. Epub 2010 Feb 5.
6
Constructing inverse probability weights for marginal structural models.构建边际结构模型的逆概率权重。
Am J Epidemiol. 2008 Sep 15;168(6):656-64. doi: 10.1093/aje/kwn164. Epub 2008 Aug 5.
9
Estimating causal effects from epidemiological data.从流行病学数据中估计因果效应。
J Epidemiol Community Health. 2006 Jul;60(7):578-86. doi: 10.1136/jech.2004.029496.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验