Suppr超能文献

在有氧和无氧条件下,甲烷基膜生物膜反应器中过氯酸的生物还原。

Perchlorate bio-reduction in a methane-based membrane biofilm reactor in the presence and absence of oxygen.

机构信息

Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia.

Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia.

出版信息

Water Res. 2019 Jun 15;157:572-578. doi: 10.1016/j.watres.2019.04.008. Epub 2019 Apr 10.

Abstract

Perchlorate has been widely detected in various water environments and could cause serious health problems. Methane has been proposed as a promising electron donor to remove perchlorate from contaminated water, yet it is unclear whether and how microbial methane oxidation couples with perchlorate reduction, in particular under anoxic conditions. Here, the feasibility and performance of perchlorate reduction driven by methane in the presence and absence of oxygen were investigated and compared in a lab-scale methane-based membrane biofilm reactor. Long-term operational performance suggested that perchlorate was reduced to chloride, with 4 mg Cl/L/d of perchlorate removal rate under anoxic conditions. Differently, perchlorate removal rate increased to 16 mg Cl/L/d, and volatile fatty acids (VFAs) were produced from methane partial oxidation when a limited oxygen (10 mg/L/d) was externally supplied. Regardless of oxygen conditions, microbial perchlorate reduction driven by methane might be mediated through synergistic interactions by a microbial consortium, but with different key microbial members under both oxygen regimes. Under anoxic conditions, aerobic methanotrophs (likely Methylocystaceae and Methylococcaceae) might micro-aerobically oxidize methane by utilizing internal oxygen from microbial perchlorate reduction, which might be mediated by Rhodocyclaceae. In contrast, under oxygen-limiting conditions, methanogens (e.g., Methanosarcina) and fermenters (e.g., Veillonellaceae) likely jointly converted methane into VFAs, then dissimilatory perchlorate-reducing bacteria (e.g., Rhodocyclaceae) utilized the produced VFAs to reduce perchlorate to chloride. Our findings provide evidence to link methane oxidation with perchlorate reduction under both oxygen regimes, which could be facilitated to design a process to remove perchlorate from groundwater.

摘要

高氯酸盐已在各种水环境中广泛检出,可能会造成严重的健康问题。甲烷已被提议作为一种很有前途的电子供体,用于去除受污染水中的高氯酸盐,但目前尚不清楚微生物甲烷氧化是否以及如何与高氯酸盐还原耦合,特别是在缺氧条件下。在此,在实验室规模的甲烷基膜生物膜反应器中,研究并比较了有氧和无氧条件下甲烷驱动的高氯酸盐还原的可行性和性能。长期运行性能表明,在缺氧条件下,高氯酸盐被还原为氯离子,其去除速率为 4mg Cl/L/d。不同的是,当外部供应有限的氧气(10mg/L/d)时,高氯酸盐的去除速率增加到 16mg Cl/L/d,并且甲烷部分氧化产生了挥发性脂肪酸(VFAs)。无论氧气条件如何,由甲烷驱动的微生物高氯酸盐还原可能是通过微生物群落的协同相互作用介导的,但在两种氧气条件下,关键的微生物成员不同。在缺氧条件下,好氧甲烷营养菌(可能是甲基球菌科和甲基球菌科)可能通过利用微生物高氯酸盐还原产生的内部氧气,进行微需氧甲烷氧化,这可能是由红环菌科介导的。相比之下,在缺氧条件下,产甲烷菌(例如,产甲烷菌)和发酵菌(例如,韦荣氏菌科)可能共同将甲烷转化为 VFAs,然后异化高氯酸盐还原菌(例如,红环菌科)利用产生的 VFAs 将高氯酸盐还原为氯离子。我们的研究结果提供了在两种氧气条件下将甲烷氧化与高氯酸盐还原联系起来的证据,这可以有助于设计一种从地下水去除高氯酸盐的工艺。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验