Suppr超能文献

氧气在膜生物膜反应器中甲烷依赖型硒酸盐还原中的作用:刺激还是抑制。

Roles of Oxygen in Methane-dependent Selenate Reduction in a Membrane Biofilm Reactor: Stimulation or Suppression.

机构信息

Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.

Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.

出版信息

Water Res. 2021 Jun 15;198:117150. doi: 10.1016/j.watres.2021.117150. Epub 2021 Apr 14.

Abstract

Although methane (CH) has been proven to be able to serve as an electron donor for bio-reducing various oxidized contaminants (e.g., selenate (SeO)), little is known regarding the roles of oxygen in methane-based reduction processes. Here, a methane-based membrane biofilm reactor (MBfR) was established for evaluating the effects of oxygen supply rates on selenate reduction performance and microbial communities. The oxygen supply rate played a dual role (stimulatory or suppressive effect) in selenate reduction rates, depending on the presence or absence of dissolved oxygen (DO). Specifically, selenate reduction rate was substantially enhanced when an appropriate oxygen rate (e.g., 12 to 184 mg/Ld in this study) was supplied but with negligible DO. The highest selenate reduction rate (up to 34 mg-Se/Ld) was obtained under an oxygen supply rate of 184 mg/Ld. In contrast, excessive oxygen supply rate (626 mg/Ld) would significantly suppress selenate reduction rate under DO level of 3 mg/L. Accordingly, though the high oxygen supply rate (626 mg/Ld) would promote the expression of pmoA (5.9 × 10 copies g), the expression level of narG (a recognized gene to mediate selenate reduction) would be significantly downregulated (6.1 × 10 copies g), thus suppressing selenate reduction. In contrast, the expression of narG gene significantly increased to 2.8 × 10 copies g, and the expression of pmoA gene could still maintain at 1.1 × 10 copies g under an oxygen supply rate of 184 mg/Ld. High-throughput sequencing targeting 16S rRNA gene, pmoA, and narG collectively suggested Methylocystis acts as the major aerobic methanotroph, in synergy with Arthrobacter and Variovorax which likely jointly reduce selenate to selenite (SeO), and further to elemental selenium (Se). Methylocystis was predominant in the biofilm regardless of variations of oxygen supply rates, while Arthrobacter and Variovorax were sensitive to oxygen fluctuation. These findings provide insights into the effects of oxygen on methane-dependent selenate reduction and suggest that it is feasible to achieve a higher selenate removal by regulating oxygen supply rates.

摘要

尽管甲烷 (CH) 已被证明能够作为电子供体还原各种氧化污染物(例如,硒酸盐 (SeO)),但对于氧气在基于甲烷的还原过程中的作用知之甚少。在这里,建立了一个基于甲烷的膜生物膜反应器 (MBfR) 来评估供氧量对硒酸盐还原性能和微生物群落的影响。供氧量在硒酸盐还原率中起着双重作用(刺激或抑制作用),具体取决于是否存在溶解氧 (DO)。具体来说,当以适当的氧气速率(例如,在本研究中为 12 至 184 mg/Ld)供应氧气但 DO 可忽略不计,硒酸盐还原率会大大提高。在 184 mg/Ld 的氧气供应速率下,获得了最高的硒酸盐还原率(高达 34 mg-Se/Ld)。相比之下,在 DO 水平为 3 mg/L 时,过量的氧气供应速率(626 mg/Ld)会显著抑制硒酸盐的还原率。因此,尽管高氧气供应速率(626 mg/Ld)会促进 pmoA 的表达(5.9 × 10 拷贝 g),但 narG(介导硒酸盐还原的公认基因)的表达水平会显著下调(6.1 × 10 拷贝 g),从而抑制硒酸盐的还原。相比之下,narG 基因的表达显著增加到 2.8 × 10 拷贝 g,并且在氧气供应速率为 184 mg/Ld 时,pmoA 基因的表达仍能维持在 1.1 × 10 拷贝 g。针对 16S rRNA 基因、pmoA 和 narG 的高通量测序共同表明,Methylocystis 作为主要的好氧甲烷营养菌,与 Arthrobacter 和 Variovorax 协同作用,可能将硒酸盐共同还原为亚硒酸盐 (SeO),进一步还原为元素硒 (Se)。无论供氧量的变化如何,Methylocystis 都在生物膜中占主导地位,而 Arthrobacter 和 Variovorax 对氧气波动敏感。这些发现为氧气对依赖甲烷的硒酸盐还原的影响提供了深入的了解,并表明通过调节供氧量可以实现更高的硒酸盐去除率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验